Advertisement

Signal, Image and Video Processing

, Volume 7, Issue 5, pp 855–863 | Cite as

A new method for image segmentation based on Fuzzy C-means algorithm on pixonal images formed by bilateral filtering

  • Ehsan NadernejadEmail author
  • Sara Sharifzadeh
Original Paper

Abstract

In this paper, a new pixon-based method is presented for image segmentation. In the proposed algorithm, bilateral filtering is used as a kernel function to form a pixonal image. Using this filter reduces the noise and smoothes the image slightly. By using this pixon-based method, the image over segmentation could be avoided. Indeed, the bilateral filtering, as a preprocessing step, eliminates the unnecessary details of the image and results in a few numbers of pixons, faster performance and more robustness against unwanted environmental noises. Then, the obtained pixonal image is segmented using the hierarchical clustering method (Fuzzy C-means algorithm). The experimental results show that the proposed pixon-based approach has a reduced computational load and a better accuracy compared to the other existing pixon-based image segmentation techniques.

Keywords

Image segmentation Bilateral filtering Fuzzy C-mean Pixonal image 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonnet N., Cutrona J., Herbin M.: A ‘no-threshold’ histogram- based image segmentation method. Pattern Recognit. 35(10), 2319–2322 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Shih F.Y., Cheng S.: Automatic seeded region growing for color image segmentation. Image Vis. Comput. 23, 877–886 (2005)CrossRefGoogle Scholar
  3. 3.
    Gonzalez R.C., Woods R.E.: Digital Image Processing. Prentice Hall, Englewood Cliffs (2004)Google Scholar
  4. 4.
    Papamichail G.P., Papamichail D.P.: The k-means range algorithm for personalized data clustering in e-Commerce. Eur. J. Oper. Res. 177(3), 1400–1408 (2007)zbMATHCrossRefGoogle Scholar
  5. 5.
    Carvalho A.T.F.: Fuzzy C-means clustering methods for symbolic interval data. Pattern Recognit. Lett. 28(4), 423–437 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Clausi D.A.: K-means iterative fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation. Pattern Recognit. 35(9), 1959–1972 (2002)zbMATHCrossRefGoogle Scholar
  7. 7.
    Comaniciu D., Meer P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 1–18 (2002)CrossRefGoogle Scholar
  8. 8.
    Kato Z., Pong T.C.: A markov random field image segmentation model for color textured images. Image Vis. Comput. 24(10), 1103–1114 (2006)CrossRefGoogle Scholar
  9. 9.
    Hochbaum D.S.: An efficient algorithm for image segmentation, Markov random fields and related problems. J. ACM. 48(4), 686–701 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kato Z., Zerubia J., Berthod M.: Unsupervised parallel image classification using markovian models. Pattern Recognit. 32, 591–604 (1999)CrossRefGoogle Scholar
  11. 11.
    Piña R.K., Pueter R.C.: Bayesian image reconstruction: the pixon and optimal image modeling. P. A. S. P. 105, 630–637 (1993)CrossRefGoogle Scholar
  12. 12.
    Puetter R.C.: Pixon-based multiresolution image reconstruction and the quantification of figure information content. Int. J Imaging Syst. Technol. 6, 314–331 (1995)CrossRefGoogle Scholar
  13. 13.
    Yang F., Jiang T.: Pixon-based image segmentation with markov random fields. IEEE Trans. Image Process. 12(12), 1552–1559 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lin L., Zhu L., Yang F., Jiang T.: A novel pixon-representation for image segmentation based on markov random field. Image Vis. Comput. 26, 1507–1514 (2008)CrossRefGoogle Scholar
  15. 15.
    Paris S., Kornprobst P., Tumblin J.: Bilateral Filtering. Now Publishers, Hanover (2009)Google Scholar
  16. 16.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the IEEE International Conference on Computer Vision. Bombay, (1998)Google Scholar
  17. 17.
    Chuang K.S., Tzeng H.L., Chen S., Wu J., Chen T.J.: Fuzzy C-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30(1), 9–15 (2006)CrossRefGoogle Scholar
  18. 18.
    Chuai-aree S., Lursinsap C., Sophatsathit P., Siripant S.: Fuzzy C-mean: a statistical feature classification of text and image segmentation method. Inte. J. Uncertain. Fuzziness Knowl. Based Syst. 9(6), 661–671 (2001)zbMATHGoogle Scholar
  19. 19.
    Lu, Q., Jiang, T.: Pixon-based image segmentation with markov random fields. In: Proceeding of the Asian Conference on Computer Vision. Melbourne, Australia, pp. 23–25 (2002)Google Scholar
  20. 20.
    Gonzalez, R.C., Woods, R.E.: Image Databases [Online], available at: <http://www.imageprocessingplace.com> Accessed August 2010

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Department of Photonics EngineeringTechnical University of DenmarkLyngbyDenmark
  2. 2.Department of Informatics and Mathematical ModelingTechnical University of DenmarkLyngbyDenmark

Personalised recommendations