Signal, Image and Video Processing

, Volume 6, Issue 2, pp 287–300 | Cite as

Edge extraction using zero-frequency resonator

  • Anil Kumar SaoEmail author
  • B. Yegnanarayana
Original Paper


This paper proposes an approach based on the zero-frequency resonator to extract the edge information of the images. The proposed approach is counterintuitive to the concept that edges correspond to high-frequency components of an image. The impulse-like characteristics of edges in an image distribute the energy uniformly over all frequencies of the spectrum including around the zero-frequency. This property is exploited in this paper by using the output of a zero-frequency resonator, for extracting the edge information. Spatial domain and Fourier domain methods are employed to realize the zero-frequency resonator for two-dimensional signals. The Laplacian of the Gaussian (LOG) and the proposed approach are similar in the sense that the former approach uses a Gaussian filter for smoothing operation, whereas a zero-frequency resonator is used in the proposed approach. The output of the resonator is processed using a Laplacian operator for the trend removal. In the resulting filtered image, the edge information is present at the zero-crossings, and the edges are extracted using sign correspondence principle to identify the zero-crossings corresponding to the edges. Results of edge extraction are illustrated for a few clear and noisy images.


Zero-frequency resonator Edge extraction Impulse Laplacian of Gaussian (LOG) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acton S.T.: Multi grid anisotropic diffusion. IEEE Trans. Image Process. 7(3), 280–291 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Basu M.: Gaussian-based edge-detection methods-a survey. IEEE Trans Syst Man Cybern Part C 32(3), 252–260 (2002)CrossRefGoogle Scholar
  3. 3.
    Bovik A.: Handbook of Image and Video Processing, chap. 4.11. Academic Press, New York (2000)Google Scholar
  4. 4.
    Bovik A.: Handbook of Image and Video Processing, chap. 4.12. Academic Press, New York (2000)Google Scholar
  5. 5.
    Bovik A.: Handbook of Image and Video Processing, chap. 4.4. Academic Press, New York (2000)Google Scholar
  6. 6.
    Burt P.J.: Smart sensing within a pyramid vision machine. Proc. IEEE 76(8), 1006–1015 (1988)CrossRefGoogle Scholar
  7. 7.
    Canny J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(11), 679–698 (1986)CrossRefGoogle Scholar
  8. 8.
    Caselles V., Kimmel R., Sapiro G., Sbert C.: Minimal surfaces based object segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 19(4), 394–398 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Caselles V., Morel J.: Introduction to the special issue on partial differential equations and geometry-driven diffusion in image processing and analysis. IEEE Trans. Image Process. 7(3), 269–273 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Faghih F., Smith M.: Combining spatial and scale-space techniques for edge detection to provide a spatially adaptive wavelet-based noise filtering algorithm. IEEE Trans. Image Process. 11(9), 1062–1071 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Geman D., Reynolds G.: Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 14(3), 367–383 (1992)CrossRefGoogle Scholar
  12. 12.
    Gonzalez R.C., Woods R.E.: Digital Image Processing. Addison-Wesley Publishing Company Inc, Boston, USA (1992)Google Scholar
  13. 13.
    Khalil, A., Aggoun, A., Elmabrouk, A.: Edge detection using local histogram analysis. In: Proc. of SPIE, vol. 5150, pp. 2141–2151. Lugano, Switzerland (July 2003)Google Scholar
  14. 14.
    Konishi S., Yuille A.L., Coughlan J.M., Zhu S.C.: Statistical edge detection: learning and evaluating edge cues. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 57–74 (2003)CrossRefGoogle Scholar
  15. 15.
    Marr D.C., Hildreth E.: Theory of edge detection. Proc. R. Soc. Lond. B 207(1167), 187–217 (1980)CrossRefGoogle Scholar
  16. 16.
    Murty K.S.R., Yegnanarayana B.: Epoch extraction from speech signals. IEEE Trans. Audio Speech Lang. Process. 16(8), 1602–1613 (2008)CrossRefGoogle Scholar
  17. 17.
    Murty K.S.R., Yegnanarayana B., Joseph A.: Characterization of glottal activity from speech signals. IEEE Signal Process. Lett. 16(6), 469–472 (2009)CrossRefGoogle Scholar
  18. 18.
    Oppenheim A.V., Schafer R.W.: Discrete-Time Signal Processing. Prentice Hall of India, New Delhi (1997)Google Scholar
  19. 19.
    Pattichis M.S., Bovik A.C.: Analyzing image structure by multidimensional frequency modulation. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 753–766 (2007)CrossRefGoogle Scholar
  20. 20.
    Peli E.: Feature detection algorithm based on a visual system model. Proc. IEEE 90(1), 78–93 (2002)CrossRefGoogle Scholar
  21. 21.
    Shen J., Castan S.: An optimal linear operator for step edge detection. CVGIP: Graphical Models and Image Processing 54(2), 112–133 (1992)CrossRefGoogle Scholar
  22. 22.
    Suzuki K., Horiba I., Sugie N.: Neural edge enhancer for supervised edge enhancement from noisy images. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1582–1596 (2003)zbMATHCrossRefGoogle Scholar
  23. 23.
    Teboul S., Blanc-Feraud L., Aubert G., Barlaud M.: Variational approach for edge-preserving regularization using coupled PDEs. IEEE Trans. Image Process. 7(3), 387–397 (1998)CrossRefGoogle Scholar
  24. 24.
    Wang X.: Laplacian operator-based edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 886–890 (2007)CrossRefGoogle Scholar
  25. 25.
    Yegnanarayana, B., Murty, K.S.R., Rajendran, S.: Analysis of stop consonants in Indian languages using excitation source information in speech signal. In: Proc. of ISCA-ITRW Workshop on Speech Analysis and Processing for Knowledge Discovery. Aalborg University, Denmark (June 2008)Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Indian Institute of Technology MandiMandiIndia
  2. 2.International Institute of Information TechnologyHyderabadIndia

Personalised recommendations