Signal, Image and Video Processing

, Volume 7, Issue 2, pp 247–253 | Cite as

Data hiding based on image texture classification

  • Eleni E. Varsaki
  • Vassilis Fotopoulos
  • Athanassios N. Skodras
Original Paper

Abstract

In this paper, a new pattern-based fragile, semi-blind, spatial domain data hiding scheme is proposed. The Local Binary Pattern texture classification approach is used, in order to transparently and securely embed secret data into an image. Pixel values are modified in such a way that the texture satisfies the message requirements. The method is thoroughly studied and compared to other techniques in spatial domain in terms of capacity and image quality. The scheme performs well in images with smooth areas and can be used for authentication, tamper proofing, and secret communications.

Keywords

Data hiding Texture analysis Local binary pattern Authentication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Voloshynovskiy S., Deguillaume F., Koval O.J., Pun T.: Information-theoretic data-hiding: recent achievements and open problems. Int. J. Image Graph. 5(1), 5–36 (2005)CrossRefGoogle Scholar
  2. 2.
    Wu N.I., Hwang M.S.: Data hiding: current status and key issues. Int. J. Netw. Secur. 4(1), 1–9 (2007)Google Scholar
  3. 3.
    Chan C.K., Cheng L.M.: Hiding data in images by simple LSB substitution. Pattern Recognit. 37(3), 469–474 (2004)MATHCrossRefGoogle Scholar
  4. 4.
    Tian J.: Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 13(8), 890–896 (2003)CrossRefGoogle Scholar
  5. 5.
    Chrysochos, E., Varsaki, E., Fotopoulos, V., Skodras, A.: High capacity reversible data hiding using overlapping difference expansion. In: Proceedings of 10th International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS 2009), pp. 121–124 (2009)Google Scholar
  6. 6.
    Fridrich J., Goljan M., Du R.: Lossless data embedding—new paradigm in digital watermarking. EURASIP J. Appl. Signal Process. 2002(2), 185–196 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Ni Z., Shi Y.Q., Ansari N., Su W.: Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 16(3), 354–362 (2006)CrossRefGoogle Scholar
  8. 8.
    Cox I.J., Kilian J., Leighton F.T., Shamoon T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  9. 9.
    Westfeld, A.: F5—a steganographic algorithm. In: IHW ’01: Proceedings of the 4th International Workshop on Information Hiding, pp. 289–302. Springer, Berlin (2001)Google Scholar
  10. 10.
    Jiang J., Armstrong A.: Data hiding approach for efficient image indexing. Electron. Lett. 38(23), 1424–1425 (2002)CrossRefGoogle Scholar
  11. 11.
    Lopes, I.O., Barcelos, C.A.Z., Batista, M.A., Silva, A.M.: Enhanced watermarking scheme based on texture analysis. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) Advanced Concepts for Intelligent Vision Systems, 8th International Conference, ACIVS 2006, Antwerp, Belgium, September 18–21, 2006, Proceedings, Lecture Notes in Computer Science, vol. 4179, pp. 746–756. Springer, Berlin (2006)Google Scholar
  12. 12.
    Yang H., Kot A.: Pattern-based data hiding for binary image authentication by connectivity-preserving. IEEE Trans. Multimed. 9(3), 475–486 (2007)CrossRefGoogle Scholar
  13. 13.
    Powell, R.D., Nitzberg, M.J.: Data hiding based on neighborhood attributes. US Patent 6137892 (2000)Google Scholar
  14. 14.
    Otori, H., Kuriyama, S.: Data-embeddable texture synthesis. In: Proceedings of the 8th International Symposium on Smart Graphics, SG ’07, pp. 146–157. Springer, Berlin (2007)Google Scholar
  15. 15.
    Ojala T., Pietikäinen M., Mäenpää T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  16. 16.
    Ojala T., Pietikäinen M., Harwood D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  17. 17.
    Tekeli, E., Cetin, M., Ercil, A.: Shape and data driven texture segmentation using local binary patterns. In: Proceedings of the 15th European Signal Processing Conference (EUSIPCO 2007), pp. 1442–1446 (2007)Google Scholar
  18. 18.
    Lafferty, P., Ahmed, F.: Texture based steganalysis: results for color images. In: Proceedings of SPIE Mathematics of Data/image Coding, Compression, and Encryption VII, with Applications, vol. 5561, pp. 145–151 (2004)Google Scholar
  19. 19.
    Yu L., Zhao Y., Ni R., Li T.: Improved adaptive LSB steganography based on chaos and genetic algorithm. EURASIP J. Adv. Signal Process. 32, 1–10 (2010)Google Scholar
  20. 20.
    Yang C.H., Weng C.Y., Wang S.J., Sun H.M.: Varied PVD+LSB evading detection programs to spatial domain in data embedding systems. J. Syst. Softw. 83, 1635–1643 (2010)CrossRefGoogle Scholar
  21. 21.
    Khodaei, M., Faez, K.: Image hiding by using genetic algorithm and LSB substitution. In: Proceedings of the 4th International Conference on Image and Signal Processing, ICISP’10, pp. 404–411. Springer, Berlin (2010)Google Scholar
  22. 22.
    Chang C.C., Chan C.S., Fan Y.H.: Image hiding scheme with modulus function and dynamic programming strategy on partitioned pixels. Pattern Recognit. 39, 1155–1167 (2006)MATHCrossRefGoogle Scholar
  23. 23.
    Varsaki, E.E., Fotopoulos, V.E., Skodras, A.N.: On the use of the discrete pascal transform in hiding data in images. In: Schelkens, P., Ebrahimi, T., Cristóbal, G., Truchetet, F., Saarikko, P. (eds.) Optics, Photonics, and Digital Technologies for Multimedia Applications, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7723, pp. 77,230L–1–77,230L–11 (2010)Google Scholar
  24. 24.
    Wang Y., Pearmain A.: Blind image data hiding based on self reference. Pattern Recognit. Lett. 25, 1681–1689 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Eleni E. Varsaki
    • 1
  • Vassilis Fotopoulos
    • 1
  • Athanassios N. Skodras
    • 1
  1. 1.Digital Systems & Media Computing Laboratory, School of Science and TechnologyHellenic Open UniversityPatrasGreece

Personalised recommendations