Advertisement

Signal, Image and Video Processing

, Volume 7, Issue 1, pp 173–188 | Cite as

Tartaglia-Pascal’s triangle: a historical perspective with applications

  • A. FarinaEmail author
  • S. Giompapa
  • A. Graziano
  • A. Liburdi
  • M. Ravanelli
  • F. Zirilli
Original Paper

Abstract

The aim of this paper is to provide a historical perspective of Tartaglia-Pascal’s triangle with its relations to physics, finance, and statistical signal processing. We start by introducing Tartaglia’s triangle and its numerous properties. We then consider its relationship with a number of topics: the Newton binomial, probability theory (in particular with the Gaussian probability density function, pdf), the Fibonacci sequence, the heat equation, the Schrödinger equation, the Black–Scholes equation of mathematical finance and stochastic filtering theory. Thus, the main contribution of this paper is to present a systematic review of the triangle properties, its connection to statistical theory, and its numerous applications. The paper has mostly a scientific-educational character and is addressed to a wide circle of readers. Sections 7 and 8 are more technical; thus, they may be of interest to more expert readers.

Keywords

Tartaglia-Pascal triangle Yang Hui triangle Newton binomial Fibonacci sequence Probability theory Heat equation Schrödinger equation Black–Scholes equation Fokker-Planck equation Kushner equation Stochastic filtering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pascal, B.: Traitè du Triangle Aritmetique. http://www.lib.cam.ac.uk/deptserv/rarebooks/PascalTraite/ (1654)
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Devlin K.: The Unfinished Game: Pascal, Fermat, and the Seventeenth-Century Letter that Made the World Modern, pp. 1–208. Perseus Book, New York (2008)zbMATHGoogle Scholar
  6. 6.
  7. 7.
    Kak, S.: The golden mean and the physics of aesthetics. Arch. Phys. physics/0411195, 1–9 (2006)Google Scholar
  8. 8.
    Barrow, J.: Cosmic Imagery: Key Images in the History of Science, Copyright Barrow. pp. 1–608. The Bodley Head, London (2008)Google Scholar
  9. 9.
  10. 10.
    Papoulis A.: Probability, Random Variables and Stochastic Processes, 3rd edn. McGraw Hill, New York (1991)Google Scholar
  11. 11.
    Gowers, T., Barrow-Green, J., Leader, I. (eds.): The Princeton Companion of Mathematics. pp. 34, 51, 193, 216–219, 285, 456, 737, Princeton University Press, Princeton (2008)Google Scholar
  12. 12.
    Mansfield, K.: Editor 50 mathematical ideas you really need to know. London (2007)Google Scholar
  13. 13.
    Posamentier A.S., Lehmann I.: The (Fabulous) Fibonacci Numbers, Amherst (New York), pp. 1–385. Prometheus Books, Amherst (2007)Google Scholar
  14. 14.
  15. 15.
    Kim K., Shevlyakov G.: Why gaussianity?. IEEE Signal Process. Mag. 25(2), 102–113 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
  17. 17.
    Benavoli A., Chisci L., Farina A.: Fibonacci sequence, golden section, Kalman filter and optimal control. Signal Process. Elsevier 89, 1483–1488 (2009)zbMATHGoogle Scholar
  18. 18.
    Capponi A., Farina A., Pilotto C.: Expressing stochastic filters via number sequences. Signal Process. 90(7), 2124–2132 (2010)zbMATHCrossRefGoogle Scholar
  19. 19.
    Philips, S.M.: The logarithmic spiral basis of the Titius-Bode law, pp. 1–45. http://www.smphillips.8m.com/article-17.html
  20. 20.
    Nelson E.: Feynman integrals and the Schrödinger equation. J. Math. Phys. 5, 332–343 (1964)zbMATHCrossRefGoogle Scholar
  21. 21.
    Black F., Scholes M.: The pricing of options and corporate liabilities. J. Politi. Econ. 81, 637–659 (1973)CrossRefGoogle Scholar
  22. 22.
    Drakakis K.: Application of signal processing to the analysis of financial data. IEEE Signal Process. Mag. 26(5), 156–160 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Scholes M.S.: Derivatives in a dynamic environment. Nobel Lect. 9, 127–154 (1997)Google Scholar
  24. 24.
    Cox J.C., Ross S.A., Rubinstein M.: Option pricing: a simplified approach. J. Financ. Econ. 7(3), 229–263 (1979)zbMATHCrossRefGoogle Scholar
  25. 25.
    Jazwinski, A.H.: Stochastic Processes and Filtering Theory, pp. 97, 112, 126, 130, 131, 175, 178, 189. Academic Press, New York, London (1970)Google Scholar
  26. 26.
  27. 27.
    Moss F., McClintock P.V.E.: Noise in Nonlinear Dynamical Systems Volume 1 Theory of Continuous Fokker—Planck Systems. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
  28. 28.
    Varshney L.R.: Local fidelity, constrained codes, and the Meru Prastara. IEEE Potentials 27, 27–32 (2008)CrossRefGoogle Scholar
  29. 29.
    Casti, J.: How normal is normal? Eng. Technol. http://kn.theiet.org/magazine/issues/0907/how-normal-0907.cfm. 25 April–8 May 2009
  30. 30.
    Taleb N.M.: The Black Swan: The Impact of the Highly Improbable. Random House, New York (2007)Google Scholar
  31. 31.
    Lucky, R.W.: Black swans. What if Gaussian engineering is clear, simple, and wrong? IEEE Spectr. 47(11), 17 (2010)Google Scholar
  32. 32.
    Buchanan, M.: Ubiquity: The Science of History or Why the World is Simpler than we Think, ©Buchanan, pp. 1–224 (2000)Google Scholar
  33. 33.
    Cristiani, E.: Chiamalo x! ovvero cosa fanno i matematici? pp. 95–96. Springer, Berlin (in Italian) (2009)Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • A. Farina
    • 1
    Email author
  • S. Giompapa
    • 2
  • A. Graziano
    • 2
  • A. Liburdi
    • 2
  • M. Ravanelli
    • 2
  • F. Zirilli
    • 3
  1. 1.Engineering, Large Systems Business UnitSELEX Sistemi IntegratiRomaItaly
  2. 2.Analysis of Integrated Systems Unit, SELEX Sistemi IntegratiRomaItaly
  3. 3.CERI—Centro di Ricerca “Previsione, Prevenzione Controllo dei Rischi Geologici”Università di Roma “La Sapienza”, Palazzo Doria PamphiljValmontone, RomaItaly

Personalised recommendations