Advertisement

Signal, Image and Video Processing

, Volume 6, Issue 2, pp 223–230 | Cite as

Optimum second threshold for the CFAR binary integrator in Pearson-distributed clutter

  • Hilal A. MezianiEmail author
  • Faouzi Soltani
Original Paper

Abstract

In this paper, we propose to analyze the binary integration of the cell-averaging constant false-alarm rate (CA-CFAR) and order statistics constant false-alarm rate (OS-CFAR) detectors in the presence of non-Gaussian spiky clutter modeled as a Pearson distribution. We derive new closed form expressions for false alarm and detection probabilities for the CA-CFAR detector in the presence of Pearson-distributed clutter backgrounds. We first show that the use of binary integration improves the detection probabilities of the detectors considered. Secondly, the maximum of detection probability occurs for an optimum choice when the second threshold is set to be equal to M = (3/4) L. For this optimum M-out-of-L rule, the comparison analysis of the CA-CFAR and OS-CFAR binary integrators showed that the latter has better performance in homogeneous Pearson- distributed clutter.

Keywords

CFAR detection Pearson distribution Optimum binary integration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Finn H.M., Johnson R.S.: Adaptive detection mode with threshold control as function of spatially sampled clutter level estimates. RCA Rev. 29, 414–463 (1968)Google Scholar
  2. 2.
    Weiner M.A.: Binary integration of fluctuating targets. IEEE Trans. Aerosp. Electron. Syst. 27(1), 11–17 (1991)CrossRefGoogle Scholar
  3. 3.
    Himonas S.D.: CFAR integration processors in randomly arriving impulse interference. IEEE Trans. Aerosp. Electron. Syst. 30(3), 809–817 (1994)CrossRefGoogle Scholar
  4. 4.
    Schleher D.C.: Radar detection in Weibull clutter. IEEE Trans. Aerosp. Electron. Syst. 12(6), 736–743 (1976)CrossRefGoogle Scholar
  5. 5.
    Goldstein G.B.: False alarm regulation in log-normal and weibull clutter. IEEE Trans. Aerosp. Electron. Syst. 9(1), 84–92 (1973)CrossRefGoogle Scholar
  6. 6.
    Ward K.D.: Compound representation of high resolution sea clutter. Electron. Lett. 17, 561–563 (1981)CrossRefGoogle Scholar
  7. 7.
    Watts S.: Radar detection prediction in sea clutter using the compound K-distribution model. IEE Proc., Part F 132, 613–620 (1985)Google Scholar
  8. 8.
    Pierce, R.D.: RCS characterisation using the alpha-stable distribution. In: Proceedings of the IEEE national Radar Conference, pp. 154–159 (1996)Google Scholar
  9. 9.
    Pierce, R. D.: Application of the positive alpha-stable distribution. In: IEEE Signal Processing Workshop on Higher-Order Statistics, pp. 420–424. Banff, Alberta, Canada (1997)Google Scholar
  10. 10.
    Tsakalides P., Trinci F., Nikias C.L.: Performance assessment of CFAR processors in Pearson-distributed clutter. IEEE Trans. Aerosp. Electron. Syst. 36(4), 1377–1386 (2000)CrossRefGoogle Scholar
  11. 11.
    Kuruoglu, E.E.: Analytical representation for positive alpha stable densities. In: Proceedings of the IEEE International Conference in Acoustics, Speech and Signal Processing, vol. 6, pp. 729–773 (2003)Google Scholar
  12. 12.
    Rohling H.: Radar CFAR thresholding in clutter and multiple target situations. IEEE Trans. Aerosp. Electron. Syst. 19(4), 608–621 (1983)CrossRefGoogle Scholar
  13. 13.
    Papoulis A.: Probability, Random Variables and Stochastic Processes. McGraw-Hill, New York (1984)zbMATHGoogle Scholar
  14. 14.
    Prudnikov A.P., Brychkov Y.A., Marichev O.I.: Integrals and Series, Volume 1: Elementary Functions. Gordon and Breach science publishers, New York (1986)Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.Laboratoire Signaux et Systèmes de Communication, Faculté des Sciences de l’Ingénieur, Département d’ElectroniqueUniversité de ConstantineConstantineAlgeria

Personalised recommendations