Signal, Image and Video Processing

, Volume 5, Issue 3, pp 329–342 | Cite as

A survey on super-resolution imaging

Original Paper

Abstract

The key objective of super-resolution (SR) imaging is to reconstruct a higher-resolution image based on a set of images, acquired from the same scene and denoted as ‘low-resolution’ images, to overcome the limitation and/or ill-posed conditions of the image acquisition process for facilitating better content visualization and scene recognition. In this paper, we provide a comprehensive review of SR image and video reconstruction methods developed in the literature and highlight the future research challenges. The SR image approaches reconstruct a single higher-resolution image from a set of given lower-resolution images, and the SR video approaches reconstruct an image sequence with a higher-resolution from a group of adjacent lower-resolution image frames. Furthermore, several SR applications are discussed to contribute some insightful comments on future SR research directions. Specifically, the SR computations for multi-view images and the SR video computation in the temporal domain are discussed.

Keywords

Super-resolution imaging Regularization Resolution enhancement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chaudhuri S.: Super-Resolution Imaging. Kluwer Academic Publishers, Boston (2001)Google Scholar
  2. 2.
    Katsaggelos A.K., Molina R., Mateos J.: Super Resolution of Images and Video. Morgan & Claypool, San Rafael (2007)Google Scholar
  3. 3.
    Bannore V.: Iterative-Interpolation Super-Resolution Image Reconstruction: A Computationally Efficient Technique. Springer, Berlin (2009)CrossRefMATHGoogle Scholar
  4. 4.
    Milanfar P.: Super-Resolution Imaging. CRC Press, Boca Raton (2010)Google Scholar
  5. 5.
    Kang M.G., Chaudhuri S.: Super-resolution image reconstruction. IEEE Signal Process. Mag. 20, 19–20 (2003)CrossRefGoogle Scholar
  6. 6.
    Bose N.K., Chan R.H., Ng M.K.: Special issue on high resolution image reconstruction. Int. J. Imaging Syst. Technol. 14(2–3), 35–145 (2004)CrossRefGoogle Scholar
  7. 7.
    Ng M.K., Chan T., Kang M.G., Milanfar P.: Special issue on super-resolution imaging: analysis, algorithms, and applications. EURASIP J. Appl. Signal Process. 2006, 1–2 (2006)Google Scholar
  8. 8.
    Ng M.K., Lam E., Tong C.S.: Special issue on superresolution imaging: theory, algorithms and applications. Multidimens. Syst. Signal Process. 18, 55–188 (2007)CrossRefGoogle Scholar
  9. 9.
    Hardie R.C., Schultz R.R., Barner K.E.: Special issue on super-resolution enhancement of digital video. EURASIP J. Appl. Signal Process. 2007, 1–3 (2007)Google Scholar
  10. 10.
    Katsaggelos A.K., Molina R.: Special issue on super resolution. Comput. J. 52, 1–167 (2008)CrossRefGoogle Scholar
  11. 11.
    Hunt B.R.: Superresolution of images: algorithms, principles, performance. Int. J. Imaging Syst. Technol. 6(4), 297–304 (1995)CrossRefGoogle Scholar
  12. 12.
    Borman, S., Stevenson R.L.: Spatial resolution enhancement of low-resolution image sequences: a comprehensive review with directions for future research. University of Notre Dame, Technical Report (1998)Google Scholar
  13. 13.
    Borman, S., Stevenson, R.L.: Super-resolution from image sequences—a review. In: Proceedings of the IEEE Midwest Symposium on Circuits and Systems, pp. 374–378. Notre Dame, IN (1998)Google Scholar
  14. 14.
    Park S.C., Park M.K., Kang M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20, 21–36 (2003)CrossRefGoogle Scholar
  15. 15.
    Ng M.K., Bose N.K.: Mathematical analysis of super-resolution methodology. IEEE Signal Process. Mag. 20, 62–74 (2003)CrossRefGoogle Scholar
  16. 16.
    Capel D., Zisserman A.: Computer vision applied to super resolution. IEEE Signal Process. Mag. 20, 75–86 (2003)CrossRefGoogle Scholar
  17. 17.
    Choi E., Choi J., Kang M.G.: Super-resolution approach to overcome physical limitations of imaging sensors: an overview. Int. J. Imaging Syst. Technol. 14, 36–46 (2004)CrossRefGoogle Scholar
  18. 18.
    Farsiu S., Robinson D., Elad M., Milanfar P.: Advances and challenges in super-resolution. Int. J. Imaging Syst. Technol. 14, 47–57 (2004)CrossRefGoogle Scholar
  19. 19.
    Ouwerkerk J.D.: Image super-resolution survey. Image Vis. Comput. 24, 1039–1052 (2006)CrossRefGoogle Scholar
  20. 20.
    Cristobal, G., Gila, E., Sroubek, F., Flusser, J., Miravet, C., Rodriguez, F.B.: Superresolution imaging: a survey of current techniques. In: Proceedings of the SPIE Conference on Advanced Signal Processing Algorithms, Architectures, and Implementations, pp. 70740C.1–70740C.18 (2008)Google Scholar
  21. 21.
    Tsai R.Y., Huang T.S.: Multiframe image restoration and registration. In: Huang, T.S. (ed.) Advances in Computer Vision and Image Processing, JAI Press Inc., London (1984)Google Scholar
  22. 22.
    Max B., Wolf E.: Principles of Optics. Cambridge University Press, Cambridge (1997)Google Scholar
  23. 23.
    Dropkin, H., Ly, C.: Superresolution for scanning antenna. In: Proceedings of the IEEE International Radar Conference, pp. 306–30. (1997)Google Scholar
  24. 24.
    Caner, G., Tekalp, A.M., Heinzelman, W.: Performance evaluation of super-resolution reconstruction from video. In: Proceedings of the IS&T/SPIE’s Annual Symposium on Electronic Imaging, pp. 177–185. Santa Clara, CA (2003)Google Scholar
  25. 25.
    Tanaka, M., Okutomi, M.: Theoretical analysis on reconstruction-based super-resolution for an arbitrary PSF. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 947–954. San Diego, CA (2005)Google Scholar
  26. 26.
    Rajagopalan A.N., Kiran V.P.: Motion-free superresolution and the role of relative blur. Opt. Soc. Am. J. A Opt. Image Sci. 20, 2022–2032 (2003)CrossRefGoogle Scholar
  27. 27.
    Pham, T.Q., van Vliet, L.J., Schutte, K.: Influence of signal-to-noise ratio and point spread function on limits of superresolution. In: Proceedings of the SPIE Conference on Image Processing: Algorithms and Systems IV, pp. 169–180. San Jose, CA (2005)Google Scholar
  28. 28.
    Wang Z.-Z., Qi F.-H.: Analysis of multiframe super-resolution reconstruction for image anti-aliasing and deblurring. Image Vis. Comput. 23, 393–404 (2005)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Eekeren A.W.M., Schutte K., Oudegeest O.R., Vliet L.J.: Performance evaluation of super-resolution reconstruction methods on real-world data. EURASIP J. Appl. Signal Process. 2007(43953), 1–11 (2007)Google Scholar
  30. 30.
    Baker S., Kanade T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1167–1183 (2002)CrossRefGoogle Scholar
  31. 31.
    Lin Z., Shum H.-Y.: Fundamental limits of reconstruction-based superresolution algorithms under local translation. IEEE Trans. Pattern Anal. Mach. Intell. 26, 83–97 (2004)CrossRefGoogle Scholar
  32. 32.
    Lin, Z.-C., He, J.-F., Tang, X.-O., Tang, C.-K.: Limits of learning-based superresolution algorithms. In: Proceedings of the IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil (2007)Google Scholar
  33. 33.
    Robinson D., Milanfar P.: Statistical performance analysis of super-resolution. IEEE Trans. Image Process. 15, 1413–1428 (2006)CrossRefGoogle Scholar
  34. 34.
    Chiang M.-C., Boult T.E.: Efficient super-resolution via image warping. Image Vis. Comput. 28, 761–771 (2000)CrossRefGoogle Scholar
  35. 35.
    Patti A., Altunbasak Y.: Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants. IEEE Trans. Image Process. 10, 179–186 (2001)CrossRefGoogle Scholar
  36. 36.
    Lertrattanapanich S., Bose N.K.: High resolution image formation from low resolution frames using Delaunay triangulation. IEEE Trans. Image Process. 11, 1427–1441 (2002)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Wang Z.-Z., Qi F.-H.: On ambiguities in super-resolution modeling. IEEE Signal Process. Lett. 11, 678–681 (2004)CrossRefGoogle Scholar
  38. 38.
    Nguyen N., Milanfar P.: A wavelet-based interpolation-restoration method for superresolution. Circuits Syst. and Signal Process. 19, 321–338 (2000)CrossRefMATHGoogle Scholar
  39. 39.
    Ei-Khamy S.E., Hadhoud M.M., Dessouky M.I., Salam B.M., Ei-Samie F.E.: Regularized super-resolution reconstruction of images using wavelet fusion. Opt. Eng. 44, 097001.1–097001.10 (2005)Google Scholar
  40. 40.
    Ei-Khamy S.E., Hadhoud M.M., Dessouky M.I., Salam B.M., Ei-Samie F.E.: Wavelet fusion: a tool to break the limits on LMMSE image super-resolution. Int. J. Wavel. Multiresolut. Inf. Process. 4, 105–118 (2006)CrossRefGoogle Scholar
  41. 41.
    Ji, H., Fermuller, C.: Wavelet-based super-resolution reconstruction: theory and algorithm. In: Proceedings of the European Conference on Computer Vision, pp. 295–307. Graz, Austria (2006)Google Scholar
  42. 42.
    Ji H., Fermuller C.: Robust wavelet-based super-resolution reconstruction: theory and algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 31, 649–660 (2009)CrossRefGoogle Scholar
  43. 43.
    Chappalli M.B., Bose N.K.: Simultaneous noise filtering and super-resolution with second-generation wavelets. IEEE Signal Process. Lett. 12, 772–775 (2005)CrossRefGoogle Scholar
  44. 44.
    Ur H., Gross D.: Improved resolution from subpixel shifted pictures. CVGIP Graph. Models Image Process. 54, 181–186 (1992)CrossRefGoogle Scholar
  45. 45.
    Bose N.K., Ahuja N.A.: Superresolution and noise filtering using moving least squares. IEEE Trans. Image Process. 15, 2239–2248 (2006)CrossRefGoogle Scholar
  46. 46.
    Irani M., Peleg S.: Improving resolution by image registration. CVGIP Graph. Models Image Process. 53, 231–239 (1991)CrossRefGoogle Scholar
  47. 47.
    Patti A.J., Tekalp A.M.: Super resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Trans. Image Process. 6, 1446–1451 (1997)CrossRefGoogle Scholar
  48. 48.
    Tom, B.C., Katsaggelos, A.K.: Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images. In: Proceedings of the IEEE International Conference on Image Processing, pp. 539–542. Washington, DC (1995)Google Scholar
  49. 49.
    Hardie R.C., Barnard K.J., Armstrong E.E.: Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. IEEE Trans. Image Process. 6, 1621–1633 (1997)CrossRefGoogle Scholar
  50. 50.
    Tian J., Ma K.-K.: Stochastic super-resolution image reconstruction. J. Vis. Commun. Image Represent. 21, 232–244 (2010)CrossRefGoogle Scholar
  51. 51.
    Tian, J., Ma, K.-K.: Edge-adaptive super-resolution image reconstruction using a Markov chain Monte Carlo approach. In: Proceedings of the International Conference on Information, Communications and Signal Processing. Singapore (2007)Google Scholar
  52. 52.
    Schultz R.R., Stevenson R.L.: Extraction of high-resolution frames from video sequences. IEEE Trans. Image Process. 5, 996–1011 (1996)CrossRefGoogle Scholar
  53. 53.
    Kong, D., Han, M., Xu, W., Tao, H., Gong Y.: A conditional random field model for video super-resolution. In: Proceedings of the IEEE International Conference on Pattern Recognition, pp. 619–622. Hong Kong (2006)Google Scholar
  54. 54.
    Suresh K.V., Rajagopalan A.N.: Robust and computationally efficient superresolution algorithm. Opt. Soc. Am. J. A Opt. Image Sci. 24, 984–992 (2007)CrossRefGoogle Scholar
  55. 55.
    Belekos S., Galatsanos N.P., Katsaggelos A.K.: Maximum a posteriori video super-resolution using a new multichannel image prior. IEEE Trans. Image Process. 19, 1451–1464 (2010)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Shen H., Zhang L., Huang B., Li P.: A MAP approach for joint motion estimation, segmentation, and super resolution. IEEE Trans. Image Process. 16, 479–490 (2007)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Humblot F., Mohammad-Djafari A.: Super-resolution using hidden Markov model and Bayesian detection estimation framework. EURASIP J. Appl. Signal Process. 2006(36971), 1–16 (2006)Google Scholar
  58. 58.
    Mohammad-Djafari A.: Super-resolution: A short review, a new method based on hidden Markov modeling of hr image and future challenges. Comput. J. 52, 126–141 (2008)CrossRefGoogle Scholar
  59. 59.
    Capel, D., Zisserman, A.: Super-resolution enhancement of text image sequences. In: Proceedings of the IEEE International Conference on Pattern Recognition, pp. 600–605. Barcelona, Spain (2000)Google Scholar
  60. 60.
    Chakrabarti A., Rajagopalan A.N., Chellappa R.: Super-resolution of face images using kernel PCA-based prior. IEEE Trans. Multimed. 9, 888–892 (2007)CrossRefGoogle Scholar
  61. 61.
    Kim, K.I., Franz, M., Scholkopf, B.: Kernel hebbian algorithm for single-frame super-resolution. In: Proceedings of the ECCV Workshop on Statistical Learning in Computer Vision, pp. 135–149. Prague, Czech Republic (2004)Google Scholar
  62. 62.
    Tipping M.E., Bishop C.M.: Bayesian image super-resolution. In: Becker, S., Thrun, S., Obermeyer, K. (eds) Advances in Neural Information Processing Systems, MIT Press, Cambridge (2002)Google Scholar
  63. 63.
    Pickup L.C., Capel D., Roberts S.J., Zisserman A.: Bayesian image super-resolution, continued. In: Scholkopf, B., Platt, J., Hoffman, T. (eds) Advances in Neural Information Processing Systems, pp. 1089–1096. MIT Press, Cambridge (2006)Google Scholar
  64. 64.
    He H., Kondi L.P.: Resolution enhancement of video sequences with simultaneous estimation of the regularization parameter. J. Electron. Imaging 13, 586–596 (2004)CrossRefGoogle Scholar
  65. 65.
    Zibetti M., Bazan F., Mayer J.: Determining the regularization parameters for super-resolution problems. Signal Process. 88, 2890–2901 (2008)CrossRefMATHGoogle Scholar
  66. 66.
    Zibettia M.V.W., Baznb F.S.V., Mayer J.: Estimation of the parameters in regularized simultaneous super-resolution. Pattern Recognit. Lett. 32, 69–78 (2011)CrossRefGoogle Scholar
  67. 67.
    Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: Proceedings of the SIGGRAPH, pp. 327–340. Los Angeles (2001)Google Scholar
  68. 68.
    Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 275–282. Washington, D.C. (2004)Google Scholar
  69. 69.
    Freeman W.T., Pasztor E.C., Carmichael O.T.: Learning low-level vision. Int. J. Comput. Vis. 40, 25–47 (2000)CrossRefMATHGoogle Scholar
  70. 70.
    Pickup L.C., Roberts S.J., Zisserman A.: A sampled texture prior for image super-resolution. In: Thrun, S., Saul, L., Scholkopf, B. (eds) Advances in Neural Information Processing Systems, MIT Press, Cambridge (2003)Google Scholar
  71. 71.
    Datsenko D., Elad M.: Example-based single document image super-resolution: a global MAP approach with outlier rejection. Multidimens. Syst. Signal Process. 18, 103–121 (2007)MathSciNetCrossRefMATHGoogle Scholar
  72. 72.
    Wang J., Zhu S., Gong Y.: Resolution enhancement based on learning the sparse association of image patches. Pattern Recognit. Lett. 31, 1–10 (2010)CrossRefGoogle Scholar
  73. 73.
    Kim K.I., Kwon Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1127–1133 (2010)MathSciNetCrossRefGoogle Scholar
  74. 74.
    Yang J., Wright J., Huang T., Ma Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19, 2861–2873 (2010)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Rhee S., Kang M.G.: Discrete cosine transform based regularized high-resolution image reconstruction algorithm. Opt. Eng. 38, 1348–1356 (1999)CrossRefGoogle Scholar
  76. 76.
    Woods N.A., Galatsanos N.P., Katsaggelos A.K.: Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images. IEEE Trans. Image Process. 15, 201–213 (2006)MathSciNetCrossRefGoogle Scholar
  77. 77.
    Dempster P., Laird N.M., Rubin D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39(1), 1–38 (1977)MathSciNetMATHGoogle Scholar
  78. 78.
    Bertero M., Boccacci P.: Introduction to Inverse Problems in Imaging. IOP Publishing Ltd, Philadelphia (1998)CrossRefMATHGoogle Scholar
  79. 79.
    Li S.Z.: Markov Random Field Modeling in Computer Vision. Springer, New York (1995)Google Scholar
  80. 80.
    Rue H.: Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall, Boca Raton (2005)CrossRefMATHGoogle Scholar
  81. 81.
    Bose, N.K., Lertrattanapanich, S., Koo, J.: Advances in superresolution using L-curve. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 433–436. Sydney, Australia (2001)Google Scholar
  82. 82.
    Wu C.F.J.: On the convergence properties of the EM algorithm. Ann. Stat. 11, 95–103 (1983)CrossRefMATHGoogle Scholar
  83. 83.
    Metropolis N., Rosenbluth M.N., Rosenbluth A.W., Teller A.H., Teller E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)CrossRefGoogle Scholar
  84. 84.
    Schultz R.R., Li M., Stevenson R.L.: Subpixel motion estimation for super-resolution image sequence enhancement. J. Vis. Commun. Image Represent. 9, 38–50 (1998)CrossRefGoogle Scholar
  85. 85.
    Protter M., Elad M.: Super resolution with probabilistic motion estimation. IEEE Trans. Image Process. 18, 1899–1904 (2009)MathSciNetCrossRefGoogle Scholar
  86. 86.
    Barreto D., Alvarez L.D., Abad J.: Motion estimation techniques in super-resolution image reconstruction: a performance evaluation. In: Tsvetkov, M., Golev, V., Murtagh, F., Molina, R. (eds) Virtual Observatory. Plate Content Digitalization, Archive Mining and Image Sequence Processing, pp. 254–268. Sofia, Bulgary (2005)Google Scholar
  87. 87.
    Callico G., Lopez S., Sosa O., Lopez J.F., Sarmiento R.: Analysis of fast block matching motion estimation algorithms for video super-resolution systems. IEEE Trans. Consum. Electron. 54, 1430–1438 (2008)CrossRefGoogle Scholar
  88. 88.
    Baker, S., Kanade, T.: Super resolution optical flow. The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Technical Report, Oct (1999)Google Scholar
  89. 89.
    Zhao, W., Sawhney, H.: Is super-resolution with optical flow feasible? In: Proceedings of the European Conference on Computer Vision, pp. 599–613. Copenhagen, Denamrk (2002)Google Scholar
  90. 90.
    Lin, F., Fookes, C., Chandran, V., Sridharan, S.: Investigation into optical flow super-resolution for surveillance applications. In: Proceedings of the APRS Workshop on Digital Image Computing, pp. 73–78 (2005)Google Scholar
  91. 91.
    Le H.V., Seetharaman G.: A super-resolution imaging method based on dense subpixel-accurate motion fields. J. VLSI Signal Process. 42, 79–89 (2006)CrossRefGoogle Scholar
  92. 92.
    Fransens R., Strecha C., Gool L.V.: Optical flow based super-resolution: a probabilistic approach. Comput. Vis. Image Underst. 106, 106–115 (2007)CrossRefGoogle Scholar
  93. 93.
    Suresh K.V., Kumar G.M., Rajagopalan A.N.: Superresolution of license plates in real traffic videos. IEEE Trans. Intell. Trans. Syst. 8, 321–331 (2007)CrossRefGoogle Scholar
  94. 94.
    Narayanan B., Hardie R.C., Barner K.E., Shao M.: A computationally efficient super-resolution algorithm for video processing using partition filters. IEEE Trans. Circuits Syst. Video Technol. 17, 621–634 (2007)CrossRefGoogle Scholar
  95. 95.
    Ng M.K., Shen H.-F., Zhang L.-P., Lam E.: A total variation regularization based super-resolution reconstruction algorithm for digital video. EURASIP J. Appl. Signal Process. 2007(74585), 1–16 (2007)Google Scholar
  96. 96.
    Patanavijit V., Jitapunkul S.: A Lorentzian stochastic estimation for a robust iterative multiframe super-resolution reconstruction with Lorentzian-Tikhonov regularization. EURASIP J. Appl. Signal Process. 2007(34821), 1–21 (2007)Google Scholar
  97. 97.
    Borman, S., Stevenson, R.L.: Simultaneous multi-frame MAP super-resolution video enhancement using spatio-temporal priors. In: Proceedings of the IEEE International Conference on Image Processing, pp. 469–473. Kobe, Japan (1999)Google Scholar
  98. 98.
    Zibetti M., Mayer J.: A robust and computationally efficient simultaneous super-resolution scheme for image sequences. IEEE Trans. Circuits Syst. Video Technol. 17, 1288–1300 (2007)CrossRefGoogle Scholar
  99. 99.
    Alvarez, L.D., Molina, R., Katsaggelos, A.K.: Multi-channel reconstruction of video sequences from low-resolution and compressed observations. In: The 8th Iberoamerican Congress on Pattern Recognition, pp. 46–53. Havana, Cuba (2003)Google Scholar
  100. 100.
    Elad M., Feuer A.: Superresolution restoration of an image sequence: adaptive filtering approach. IEEE Trans. Image Process. 8, 387–395 (1999)CrossRefGoogle Scholar
  101. 101.
    Elad M., Feuer A.: Super-resolution reconstruction of image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 21, 817–834 (1999)CrossRefGoogle Scholar
  102. 102.
    Farsiu S., Elad M., Milanfar P.: Video-to-video dynamic superresolution for grayscale and color sequences. EURASIP J. Appl. Signal Process. 2006(61859), 1–15 (2006)Google Scholar
  103. 103.
    Costa G.H., Bermudez J.C.M.: Statistical analysis of the LMS algorithm applied to super-resolution image reconstruction. IEEE Trans. Signal Process. 55, 2084–2095 (2007)MathSciNetCrossRefGoogle Scholar
  104. 104.
    Tian J., Ma K.-K.: A state-space super-resolution approach for video reconstruction. Signal Image Video Process. 3, 217–240 (2009)CrossRefMATHGoogle Scholar
  105. 105.
    Bishop, C.M., Blake, A., Marthi, B.: Super-resolution enhancement of video. In: Proceedings of the International Conference on Artificial Intelligence and Statistics. Key West, FL (2003)Google Scholar
  106. 106.
    Dedeoglu, G., Kanade, T., August, J.: High-zoom video hallucination by exploiting spatio-temporal regularities. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 151–158. Washington, DC (2004)Google Scholar
  107. 107.
    Kong, D., Han, M., Xu, W., Tao, H., Gong, Y.: Video superresolution with scene-specific priors. In: Proceedings of the British Machine Vision Association. Edinburgh (2006)Google Scholar
  108. 108.
    Kimura, K., Nagai, T., Nagayoshi, H., Sako, H.: Simultaneous estimation of super-resolved image and 3D information using multiple stereo-pair images. In: Proceedings of the IEEE International Conference on Image Processing, pp. 417–420. (2007)Google Scholar
  109. 109.
    Bhavsar, A.V., Rajagopalan, A.N.: Resolution enhancement for binocular stereo. In: Proceedings of the International Conference on Pattern Recognition, pp. 1–4. (2008)Google Scholar
  110. 110.
    Bhavsar A.V., Rajagopalan A.N.: Resolution enhancement in multi-image stereo. IEEE Trans. Pattern Anal. Mach. Intell. 99, 1721–1728 (2010)CrossRefGoogle Scholar
  111. 111.
    Robertson M.A., Stevenson R.L.: Temporal resolution enhancement in compressed video sequences. EURASIP J. Appl. Signal Process. 2001, 230–238 (2001)CrossRefMATHGoogle Scholar
  112. 112.
    Shechtman E., Caspi Y., Irani M.: Space-time super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 27, 531–545 (2005)CrossRefGoogle Scholar
  113. 113.
    Watanabe, K., Iwai, Y., Nagahara, H., Yachnida, M., Suzuki, T.: Video synthesis with high spatio-temporal resolution using motion compensation and image fusion in wavelet domain. In: Proceedings of the Asian Conference on Computer Vision, pp. 480–489. Hyderabad, India (2006)Google Scholar
  114. 114.
    Maor N., Feuer A., Goodwin G.C.: Compression at the source for digital camcorders. EURASIP J. Image Video Process. 2007(41516), 1–11 (2007)Google Scholar
  115. 115.
    Ishikawa, H., Geiger, D.: Rethinking the prior model for stereo. In: Proceedings of the European Conference on Computer Vision, pp. 526–537. (2006)Google Scholar
  116. 116.
    Szeliski, R., Veksler, O., Agarwala, A., Rother, C.: A comparative study of energy minimization methods for Markov random fields. In: Proceedings of the European Conference on Computer Vision, pp. 16–29. (2006)Google Scholar
  117. 117.
    Krishnamurthy R., Woods J., Moulin P.: Frame interpolation and bidirectional prediction of video using compactly encoded optical flow fields and label fields. IEEE Trans. Circuits Syst. Video Technol. 9, 713–726 (1999)CrossRefGoogle Scholar
  118. 118.
    Zhang Y., Zhao D., Ji X., Wang R., Gao W.: A spatio-temporal auto regressive model for frame rate upconversion. IEEE Trans. Circuits Syst. Video Technol. 19, 1289–1301 (2009)CrossRefGoogle Scholar
  119. 119.
    Zhang Y., Zhao D., Ma S., Wang R., Gao W.: A motion-aligned auto-regressive model for frame rate up conversion. IEEE Trans. Image Process. 19, 1248–1258 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations