Signal, Image and Video Processing

, Volume 5, Issue 3, pp 283–290 | Cite as

Image quality assessment based on S-CIELAB model

  • Lihuo He
  • Xinbo Gao
  • Wen Lu
  • Xuelong Li
  • Dacheng Tao
Original Paper

Abstract

This paper proposes a new image quality assessment framework which is based on color perceptual model. By analyzing the shortages of the existing image quality assessment methods and combining the color perceptual model, the general framework of color image quality assessment based on the S-CIELAB color space is presented. The S-CIELAB color model, a spatial extension of CIELAB, has an excellent performance for mimicking the perceptual processing of human color vision. This paper incorporates excellent color perceptual characteristics model with the geometrical distortion measurement to assess the image quality. First, the reference and distorted images are transformed into S-CIELAB color perceptual space, and the transformed images are evaluated by existing metric in three color perceptual channels. The fidelity factors of three channels are weighted to obtain the image quality. Experimental results achieved on LIVE database II shows that the proposed methods are in good consistency with human subjective assessment results.

Keywords

Image quality assessment Color vision S-CIELAB Perceptual characteristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ali M.A., Klyne M.A.: Vision in Vertebrates, pp. 174–175. Plenum Press, New York (1985)CrossRefGoogle Scholar
  2. 2.
    Chandler D.M., Hemami S.S.: A wavelet-based visual signal-to-noise ratio for natural image. IEEE Trans. Image Process. 16(9), 2284–2296 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Connolly C., Fliess T.: A study of efficiency and accuracy in the transformation from RGB to CIELAB color space. IEEE Trans. Image Process. 6, 1046–1048 (1997)CrossRefGoogle Scholar
  4. 4.
    Final report from the Video Quality Experts Group (VQEG) on the Validation of Objective Models of Video Quality Assessment, Phase II VQEG, [Online] Available: http://www.vqeg.org/ (2003)
  5. 5.
    Gao X., Lu W., Li X., Tao D.: Image quality assessment based on multiscale geometric analysis. IEEE Trans. Image Process. 18(7), 1409–1423 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lee Y.-K., Powers J.M.: Comparison of CIELAB ΔE * and CIEDE2000 color-differences after polymerization and thermocycling of resin composites. Dental Mater. 21(7), 678–682 (2005)CrossRefGoogle Scholar
  7. 7.
    Lu W., Zeng K., Tao D., Yuan Y., Gao X.: No-reference image quality assessment in contourlet domain. Neurocomputing 73(4–6), 784–794 (2010)CrossRefGoogle Scholar
  8. 8.
    Poirson A.B., Wandell B.A.: Pattern-color separable pathways predict sensitivity to simple colored patterns. Vis. Res. 35(2), 239–254 (1996)Google Scholar
  9. 9.
    Rajashekar, U., Wang, Z., Simoncelli, E.P.: Quantifying color image distortions based on adaptive spatio-chromatic signal decompositions. In: Proc. IEEE Int’l Conf on Image Processing, pp. 2213–2216. Cairo, Egypt (2009)Google Scholar
  10. 10.
    Sheikh H.R., Bovik A.C.: Image information and visual quality. IEEE Trans. Image Process. 15(2), 430–444 (2006)CrossRefGoogle Scholar
  11. 11.
    Sheikh, H.R., Wang, Z., Cormack, L., Bovik, A.C.: LIVE Image Quality Assessment Database, [Online] Available: http://www.live.ece.utexas.edu/research/quality (2003)
  12. 12.
    Tanaka J., Weiskopf D., Williams P.: The role of color in high-level vision. TRENDS Cogn. Sci. 5(5), 211–215 (2001)CrossRefGoogle Scholar
  13. 13.
    Toet A., Lucassen M.P.: A new universal colour image fidelity metric. Displays 24, 197–207 (2003)CrossRefGoogle Scholar
  14. 14.
    Wang Z., Bovik A.C.: Modern Image Quality Assessment. Morgan and Claypool Publishing Company, New York (2006)Google Scholar
  15. 15.
    Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  16. 16.
    Zhang X., Wandell B.A.: A Spatial extension of CIELAB for digital color image reproduction. J. Soc. Inf. Display 5, 61–63 (1997)CrossRefGoogle Scholar
  17. 17.
    Zhang X., Farrell J.E., Wandell B.A.: Applications of a spatial extension to CIELAB. SPIE 3025, 154–157 (1997)CrossRefGoogle Scholar
  18. 18.
    Zhang X., Wandell B.A.: Color image fidelity metrics evaluated using image distortion maps. Signal Process. 70(3), 201–214 (1998)MATHCrossRefGoogle Scholar
  19. 19.
    Zhang, X., Silverstein, D.A, Farrell, J.E., Wandell, B.A.: Color image quality metric S-CIELAB and its application on halftone texture visibility. In: Compcon’97 Proceedings. IEEE pp. 44–48 (1997)Google Scholar

Copyright information

© Springer-Verlag London Limited 2011

Authors and Affiliations

  • Lihuo He
    • 1
  • Xinbo Gao
    • 1
  • Wen Lu
    • 1
  • Xuelong Li
    • 2
  • Dacheng Tao
    • 3
  1. 1.School of Electronic EngineeringXidian UniversityXi’anPeople’s Republic of China
  2. 2.Center for OPTical IMagery Analysis and Learning (OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of SciencesXi’anPeople’s Republic of China
  3. 3.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations