Advertisement

Signal, Image and Video Processing

, Volume 6, Issue 4, pp 557–567 | Cite as

Iterative detection of turbo-coded offset QPSK in the presence of frequency and clock offsets and AWGN

  • K. VasudevanEmail author
Original Paper

Abstract

The key contribution of this paper is to develop transmitter and receiver algorithms in discrete-time for turbo-coded offset QPSK signals. The procedure for simulating a clock offset between the transmitter and receiver is described. Due to the use of up-sampling, matched filtering and a differential correlation approach at the receiver, the time required for detecting the start of frame (SoF) is just around 500 symbols, which is also the length of the preamble. The initial estimate of the SoF and the frequency offset, obtained using the differential correlation approach, is improved using an iterative process. A novel two-step maximum likelihood (ML) frequency offset estimation is proposed, which significantly reduces the complexity over the conventional ML estimation. The decision-directed carrier and timing recovery algorithms use simple first-order IIR filters to track the carrier phase and clock slip. The proposed synchronization and detection techniques perform effectively at an SNR per bit close to 1.5 dB, in the presence of a frequency offset as large as 30% of the symbol-rate and a clock offset of 25 ppm (parts per million). It is shown via simulations that the performance loss with respect to the bare turbo code is only about 0.5 dB, for a preamble length of 500 and a BER of 10−7. The proposed techniques are well suited for software implementation.

Keywords

Offset QPSK (quadrature phase shift keying) Frequency offset Clock offset Synchronization Matched filtering Additive white Gaussian noise (AWGN) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D’Amico A.A., D’Andrea A.N., Reggiannini R.: Efficient non-data-aided carrier and clock recovery for satellite DVB at very low signal-to-noise ratios. IEEE J. Select. Areas Commun. 19(12), 2320–2330 (2001)CrossRefGoogle Scholar
  2. 2.
    Harris F.J., Rice M.: Multirate digital filters for symbol timing synchronization in software defined radios. IEEE J. Select. Areas Commun. 19(12), 2346–2357 (2001)CrossRefGoogle Scholar
  3. 3.
    Gardner F.M.: Interpolation in digital modems—Part I: fundamentals. IEEE Trans. Commun. 41(3), 501–507 (1993)zbMATHCrossRefGoogle Scholar
  4. 4.
    Erup L., Gardner F.M., Harris R.A.: Interpolation in digital modems—Part II: implementation and performance. IEEE Trans. Commun. 41(6), 998–1008 (1993)CrossRefGoogle Scholar
  5. 5.
    Cupo R.L., Gitlin R.D.: Adaptive carrier recovery systems for digital data communications receivers. IEEE J. Select. Areas Commun. 7(9), 1328–1339 (1989)CrossRefGoogle Scholar
  6. 6.
    Caouras, N., Morawski, R., Le-Ngoc, T.: Fast carrier recovery for burst-mode coherent demodulation using feedforward phase and frequency estimation techniques. In: Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, pp. 79–83. Edmonton, Canada, May 1999Google Scholar
  7. 7.
    Saito S., Suzuki H.: Fast carrier-tracking coherent detection with dual-mode carrier recovery circuit for digital land mobile radio transmission. IEEE J. Select. Areas Commun. 7(1), 130–139 (1989)CrossRefGoogle Scholar
  8. 8.
    Kobayashi K., Sakai T., Kubota S., Morikura M., Kato S.: A new carrier recovery circuit for land mobile satellite communication. IEEE J. Select. Areas Commun. 10(8), 1306–1314 (1992)CrossRefGoogle Scholar
  9. 9.
    Uchishima, M., Tozawa, Y., Miyo, T., Takenaka, S.: Burst DSP demodulator for low E b/N 0 operation. In: Proceedings of IEEE International Conference on Communications, pp. 226–230. June 1991Google Scholar
  10. 10.
    Kobayashi, K., Matsumoto, Y., Seki, K., Kato, S.: A full digital modem for offset type modulation schemes. In: Proceedings of the 3rd IEEE International Symposium on Personal, Indoor and Mobile Radio Communication, pp. 596–599. Oct 1992Google Scholar
  11. 11.
    Lorenzelli F., Testa L., Visintin M., Biglieri E., Pent M.: Clock-aided carrier recovery in trellis-coded PSK. IEEE J. Select. Areas Commun. 7(9), 1307–1317 (1989)CrossRefGoogle Scholar
  12. 12.
    Sangriotis M., Xezonakis I.: Digital costas loop like PLL for the carrier recovery of a QPSK signal. Electron. Lett. 29(10), 897–899 (1993)CrossRefGoogle Scholar
  13. 13.
    Karam, G., Kervarec, J., Sari, H., Vandamme, P.: All-digital implementation of the carrier recovery loop in digital radio systems. In: Proceedings of IEEE International Conference on Communications, pp. 175–179. June 1991Google Scholar
  14. 14.
    Benani, A.M., Gagnon, F.: Comparison of carrier recovery techniques in M-QAM digital communication systems. In: Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, pp. 73–77. Mar. 2000Google Scholar
  15. 15.
    Kim, K.-Y., Choi, H.-J.: Design of carrier recovery algorithm for high-order QAM with large frequency acquisition range. In: Proceedings of IEEE International Conference on Communications, pp. 1016–1020. June 2001Google Scholar
  16. 16.
    Hou, H.-A.: Modified 128-QAM constellation schemes allowing low complexity non-data aided carrier recovery. In: Proceedings of the 16th IEEE International Symposium on Personal, Indoor and Mobile Radio Communication, pp. 2557–2561. (2005)Google Scholar
  17. 17.
    Dauwels, J., Loeliger, H.-A.: Phase estimation by message passing. In: Proceedings of IEEE International Conference on Communications, pp. 523–527. June 2004Google Scholar
  18. 18.
    Sutskover I., Shamai S.: Iterative decoding of low-density parity-check codes over compound channels. IEEE Trans. Commun. 54(2), 308–318 (2006)CrossRefGoogle Scholar
  19. 19.
    Nuriyev R., Anastasopoulos A.: Pilot-symbol-assisted coded transmission over the block-noncoherent AWGN channel. IEEE Trans. Commun. 51(6), 953–963 (2003)CrossRefGoogle Scholar
  20. 20.
    Komninakis C., Wesel R.D.: Joint iterative channel estimation and decoding in flat correlated Rayleigh fadin. IEEE J. Select. Areas Commun. 19(9), 1706–1717 (2001)CrossRefGoogle Scholar
  21. 21.
    Feher K., Takhar G.S.: A new symbol timing recovery technique for burst modem applications. IEEE Trans. Commun. 26(1), 100–108 (1978)CrossRefGoogle Scholar
  22. 22.
    Koblents, B., McLane, P.J.: Asynchronous timing recovery in DSP based PSK modems. In: Conference Record of the 26th Asilomar Conference on Signals, Systems and Computers, pp. 632–641. Oct. 1992Google Scholar
  23. 23.
    Shi K., Serpedin E.: Fast timing recovery for linearly and non-linearly modulated systems. IEEE Trans. Veh. Technol. 54(6), 2017–2023 (2005)CrossRefGoogle Scholar
  24. 24.
    Shirato, Y., Yoshioka, H., Watanabe, K.: A novel timing recovery circuit with high tracking ability for burst-mode multilevel QAM transmission. In: IEEE Wireless Communications and Networking Conference (WCNC), pp. 578–583. Mar. 2005Google Scholar
  25. 25.
    Barry J.R., Kavc̆ić A., McLaughlin S.W., Nayak A., Zeng W.: Iterative timing recovery. IEEE Sig. Proc. Mag. 21(1), 89–102 (2004)CrossRefGoogle Scholar
  26. 26.
    Bergel I., Weiss A.J.: Cramér-Rao bound on timing recovery of linearly modulated signals with no ISI. IEEE Trans. Commun. 51(4), 634–640 (2003)CrossRefGoogle Scholar
  27. 27.
    Ryan, W.E.: A turbo code tutorial (1997) available online at: http://www.ece.arizona.edu/~ryan/
  28. 28.
    Brown J.L. Jr.: First-order sampling of bandpass signals—A new approach. IEEE Trans. Info. Theor. 26(5), 613–615 (1980)CrossRefGoogle Scholar
  29. 29.
    Vasudevan, K.: Digital communications and signal processing, 2nd edition (CDROM included). Universities Press (India), Hyderabad, (2010) www.universitiespress.com
  30. 30.
    Vasudevan, K.: Synchronization of bursty offset QPSK signals in the presence of frequency offset and noise. In: Proceedings of IEEE TENCON, Hyderabad, India, Nov. 2008Google Scholar
  31. 31.
    Vasudevan, K.: DSP-based algorithms for voiceband modems, masters thesis, Indian Institute of Technology, Madras (1995)Google Scholar
  32. 32.
    Proakis J.G., Manolakis D.G.: Digital Signal Processing: Principles, Algorithms and Applications, 2nd edn . Maxwell MacMillan, Toronto (1992)Google Scholar
  33. 33.
    Meyr H., Moeneclaey M., Fechtel S.A.: Digital Communication Receivers vol. 2: Synchronization, Channel Estimation and Signal Processing. Wiley, London (1997)Google Scholar
  34. 34.
    Choi Z.Y., Lee Y.H.: Frame synchronization in the presence of frequency offset. IEEE Trans. Commun. 50(7), 1062–1065 (2002)CrossRefGoogle Scholar
  35. 35.
    Rife D.C., Boorstyn R.R.: Single-tone parameter estimation from discrete-time observations. IEEE Trans. Info. Theor. 20(5), 591–598 (1974)zbMATHCrossRefGoogle Scholar
  36. 36.
    Bahl L., Cocke J., Jelinek F., Raviv J.: Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theor. 20(2), 284–287 (1974)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  1. 1.The Department of Electrical EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations