Advertisement

Signal, Image and Video Processing

, Volume 5, Issue 1, pp 11–28 | Cite as

Wavelet shrinkage: unification of basic thresholding functions and thresholds

  • Abdourrahmane M. Atto
  • Dominique Pastor
  • Grégoire Mercier
Original Paper

Abstract

This work addresses the unification of some basic functions and thresholds used in non-parametric estimation of signals by shrinkage in the wavelet domain. The soft and hard thresholding functions are presented as degenerate smooth sigmoid-based shrinkage functions. The shrinkage achieved by this new family of sigmoid-based functions is then shown to be equivalent to a regularization of wavelet coefficients associated with a class of penalty functions. Some sigmoid-based penalty functions are calculated, and their properties are discussed. The unification also concerns the universal and the minimax thresholds used to calibrate standard soft and hard thresholding functions: these thresholds pertain to a wide class of thresholds, called the detection thresholds. These thresholds depend on two parameters describing the sparsity degree for the wavelet representation of a signal. It is also shown that the non-degenerate sigmoid shrinkage adjusted with the new detection thresholds is as performant as the best up-to-date parametric and computationally expensive method. This justifies the relevance of sigmoid shrinkage for noise reduction in large databases or large size images.

Keywords

Non-parametric estimation Wavelets Shrinkage function Penalty function Detection thresholds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Donoho D.L., Johnstone I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bruce A.G., Gao H.Y.: Understanding waveshrink: variance and bias estimation. Biometrika 83(4), 727–745 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Donoho D.L., Johnstone I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Atto, A.M., Pastor, D., Mercier, G.: Detection threshold for non-parametric estimation. Signal, Image and Video Processing, vol. 2(3). Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Simoncelli, E.P., Adelson, E.H.: Noise removal via bayesian wavelet coring. IEEE Int. Conf. Image Proc. (ICIP) 379–382 (1996)Google Scholar
  6. 6.
    Do M.N., Vetterli M.: Wavelet-based texture retrieval using generalized gaussian density and kullback-leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Şendur L., Selesnick I.V.: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. Signal Process. 11, 2744–2756 (2002)Google Scholar
  8. 8.
    Portilla J., Strela V., Wainwright M.J., Simoncelli E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Johnstone I.M., Silverman B.W.: Empirical bayes selection of wavelet thresholds. Ann. Stat. 33(4), 1700–1752 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    ter Braak C.J.F.: Bayesian sigmoid shrinkage with improper variance priors and an application to wavelet denoising. Comput. Stat. Data Anal. 51(2), 1232–1242 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gao H.Y.: Waveshrink shrinkage denoising using the non-negative garrote. J. Comput. Graph. Stat. 7(4), 469–488 (1998)CrossRefGoogle Scholar
  12. 12.
    Antoniadis A., Fan J.: Regularization of wavelet approximations. J. Am. Stat. Assoc. 96(455), 939–955 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Luisier F., Blu T., Unser M.: A new sure approach to image denoising: interscale orthonormal wavelet thresholding. IEEE Trans. Image Process. 16(3), 593–606 (2007)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Atto, A.M., Pastor, D., Mercier, G.: Smooth sigmoid wavelet shrinkage for non-parametric estimation. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP, Las Vegas, Nevada, USA, 30 March–4 April (2008)Google Scholar
  15. 15.
    Pastor, D., Atto, A.M.: Sparsity from binary hypothesis testing and application to non-parametric estimation. European Signal Processing Conference, EUSIPCO, Lausanne, Switzerland, August 25–29 (2008)Google Scholar
  16. 16.
    Benedetto, J.J., Frasier, M.W.: Wavelets : Mathematics and applications. CRC Press, Boca Raton (1994), chap. 9: Wavelets, probability, and statistics: Some bridges, by Christian Houdré, pp. 365–398Google Scholar
  17. 17.
    Zhang J., Walter G.: A wavelet-based KL-like expansion for wide-sense stationary random processes. IEEE Trans. Signal Process. 42(7), 1737–1745 (1994)CrossRefGoogle Scholar
  18. 18.
    Leporini D., Pesquet J.-C.: High-order wavelet packets and cumulant field analysis. IEEE Trans. Inf. Theory 45(3), 863–877 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Atto A.M., Pastor D., Isar A.: On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process. Signal Process. 87(10), 2320–2335 (2007)zbMATHCrossRefGoogle Scholar
  20. 20.
    Atto, A.M., Pastor, D.: Limit distributions for wavelet packet coefficients of band-limited stationary random processes. European Signal Processing Conference, EUSIPCO, Lausanne, Switzerland, 25–28 August (2008)Google Scholar
  21. 21.
    Flandrin P.: Wavelet analysis and synthesis of fractional brownian motion. IEEE Trans. Inf. Theory 38(2), 910–917 (1992)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Tewfik A.H., Kim M.: Correlation structure of the discrete wavelet coefficients of fractional brownian motion. IEEE Trans. Inf. Theory 38(2), 904–909 (1992)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Dijkerman R.W., Mazumdar R.R.: On the correlation structure of the wavelet coefficients of fractional brownian motion. IEEE Trans. Inf. Theory 40(5), 1609–1612 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kato T., Masry E.: On the spectral density of the wavelet transform of fractional brownian motion. J. Time Ser. Anal. 20(50), 559–563 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Craigmile P.F., Percival D.B.: Asymptotic decorrelation of between-scale wavelet coefficients. IEEE Trans. Inf. Theory 51(3), 1039–1048 (2005)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Antoniadis A.: Wavelet methods in statistics: some recent developments and their applications. Stat. Surveys 1, 16–55 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Berman S.M.: Sojourns and Extremes of Stochastic Processes. Wadsworth and Brooks/Cole, USA (1992)zbMATHGoogle Scholar
  28. 28.
    Mallat S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, New York (1999)zbMATHGoogle Scholar
  29. 29.
    Coifman, R.R., Donoho, D.L.: Translation invariant de-noising. Lect. Notes Stat. (103), 125–150 (1995)Google Scholar
  30. 30.
    Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  31. 31.
    Sveinsson J.R., Benediktsson J.A.: Speckle reduction and enhancement of sar images in the wavelet domain. Geosci. Remote Sens. Symp. IGARSS 1, 63–66 (1996)CrossRefGoogle Scholar
  32. 32.
    Xie H., Pierce L.E., Ulaby F.T.: Sar speckle reduction using wavelet denoising and markov random field modeling. IEEE Trans. Geosci. Remote Sens. 40(10), 2196–2212 (2002)CrossRefGoogle Scholar
  33. 33.
    Argenti F., Bianchi T., Alparone L.: Multiresolution map despeckling of sar images based on locally adaptive generalized gaussian pdf modeling. IEEE Trans. Image Process. 15(11), 3385–3399 (2006)CrossRefGoogle Scholar
  34. 34.
    Buades A., Coll B., Morel J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Johnstone I.M., Silverman B.W.: Wavelet threshold estimators for data with correlated noise. J. Royal Stat. Soc. Ser. B 59(2), 319–351 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Müller J.W.: Possible advantages of a robust evaluation of comparisons. J. Res. Natl. Inst. Stand. Technol. 105(4), 551–555 (2000)Google Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Abdourrahmane M. Atto
    • 1
  • Dominique Pastor
    • 1
  • Grégoire Mercier
    • 1
  1. 1.TELECOM BretagneBrestFrance

Personalised recommendations