Signal, Image and Video Processing

, Volume 4, Issue 3, pp 289–302

No-reference assessment of blur and noise impacts on image quality

Original Paper


The quality of images may be severely degraded in various situations such as imaging during motion, sensing through a diffusive medium, and low signal to noise. Often in such cases, the ideal un-degraded image is not available (no reference exists). This paper overviews past methods that dealt with no-reference (NR) image quality assessment, and then proposes a new NR method for the identification of image distortions and quantification of their impacts on image quality. The proposed method considers both noise and blur distortion types that may exist in the image. The same methodology employed in the spatial frequency domain is used to evaluate both distortion impacts on image quality, while noise power is further independently estimated in the spatial domain. Specific distortions addressed here include additive white noise, Gaussian blur and de-focus blur. Estimation results are compared to the true distortion quantities, over a set of 75 different images.


Image quality measure No-reference IQM Image quality assessment Image power spectrum Blur impact Noise impact 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Engeldrum, P.G.: Image quality modeling: where are we? In: IS&T’s 1999 PICS Conference. Savannah, Georgia, pp. 251–255 (1999)Google Scholar
  2. 2.
    Wang, Z., Bovik, A.C., Lu, L.: Why is image quality assessment so difficult? In: Proceedings of Acoustics, Speech, and Signal Processing (ICASSP’02), 2002 IEEE International Conference, Orlando, vol. 4, pp. 3313–3316 (2002)Google Scholar
  3. 3.
    Wang Z., Sheikh H.R., Bovik A.C.(2003) Objective video quality assessment. In: Furht B., Marqure O. (eds) The Handbook of Video Databases: Design and Applications. CRC Press, Boca Raton, pp. 1041–1078Google Scholar
  4. 4.
    Eskicioglu, A.M.: Quality measurement for monochrome compressed images in the past 25 years. In: Proceedings of Acoustics, Speech, and Signal Processing (ICASSP’00), 2000 IEEE International Conference, Istanbul, Turkey, vol. 4, pp. 1907–1910 (2000)Google Scholar
  5. 5.
    Avcibas I., Sankur B., Sayood K.: Statistical evaluation of image quality measures. J. Electron. Imaging 11(2), 206–223 (2002)CrossRefGoogle Scholar
  6. 6.
    Eskicioglu A.M., Fisher P.S.: Image quality measures and their performance. IEEE Trans. Commun. 43(12), 2959–2965 (1995)CrossRefGoogle Scholar
  7. 7.
    Kopeika N.S.: A System Engineering Approach to Imaging. SPIE Optical Engineering Press, Bellingham (1998)Google Scholar
  8. 8.
    Lagendijk R.L., Biemond J.: Basic Methods for Image Restoration and Identification. Academic Press, New York (2000)Google Scholar
  9. 9.
    Millane, R.P., Alzaidi, S., Hsiao, W.H.: Scaling and power spectra of natural images. In: Proceedings of Image and Vision Computing, New Zealand, pp. 148–153 (2003)Google Scholar
  10. 10.
    van der Schaaf, A.: Natural Image Statistics and Visual Processing. Ph.D. thesis, Rijksuniversiteit Groningen (1998)Google Scholar
  11. 11.
    Yitzhak Yitzhaky’s Home Page at Ben-Gurion University, Israel. (2009). Accessed 12 May 2009
  12. 12.
    Huang, J., Mumford, D.: Statistics of natural images and models. In: Proceedings of Computer, Vision, and Pattern Recognition (CVPR’99). IEEE Computer Society Conference, vol. 1, pp. 1541–1547 (1999)Google Scholar
  13. 13.
    Reinhard, E., Shirley, P., Troscianko, T.: Natural image statistics for computer graphics. University of Utah, School of Computing. Tech report. UUCS-01-002 (2001)Google Scholar
  14. 14.
    Parraga C.A., Troscianko T., Tolhurst D.J.: The human visual system is optimised for processing the spatial information in natural visual images. Curr. Biol. 10(1), 35–38 (2000)CrossRefGoogle Scholar
  15. 15.
    Castleman K.R.: Digital Image Processing. Prentice-Hall, Englewood Cliffs (1979)Google Scholar
  16. 16.
    Lim S.J.: Two-Dimensional Signal and Image Processing. Prentice-Hall, Englewood Cliffs (1990)Google Scholar
  17. 17.
    Nill N.B., Bouzas B.H.: Objective image quality measure derived from digital image power spectra. Opt. Eng. 31(4), 813–825 (1992)CrossRefGoogle Scholar
  18. 18.
    Torralba A., Oliva A.: Statistics of natural image categories. Netw. Comput. Neural Syst. 14(3), 391–412 (2003)CrossRefGoogle Scholar
  19. 19.
    Balboa R.M., Grzywacz N.M.: Power spectra and distribution of contrasts of natural images from different habitats. Vis. Res. 43, 2527–2537 (2003)CrossRefGoogle Scholar
  20. 20.
    Bex P.J., Makous W.: Spatial frequency, phase and the contrast of natural images. J. Opt. Soc. Am. 4(6), 1096–1106 (2002)CrossRefGoogle Scholar
  21. 21.
    Jain A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  22. 22.
    Saghri J.A., Cheatham P.S., Habibi A.: Image quality measure based on a human visual system model. Opt. Eng. 28(7), 813–818 (1989)Google Scholar
  23. 23.
    Wang, Z., Simoncelli, E.P.: Local phase coherence and the perception of blur. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Adv. Neural Information Processing Systems (NIPS’03), vol. 16 (2004)Google Scholar
  24. 24.
    Marziliano P., Dufaux F., Winkler S., Ebrahimi, T.: A no-reference perceptual blur metric. In: Proceedings of Image Processing, 2002 International Conference on Image Processing, Lausanne, Switzerland, vol.3, pp. 57–60 (2002)Google Scholar
  25. 25.
    Ong, E., Lin, W., Lu, Z., Yang, X., Yao, S., Pan, F., Jiarrg, L., Moscheni, F.: A no-reference quality metric for measuring image blur. In: Proceedings of Signal Processing and Its Applications, 2003 IEEE Seventh International Symposium, vol. 1(1–4), pp. 469–472 (2003)Google Scholar
  26. 26.
    Yitzhaky Y., Milberg R., Yohayev S., Kopeika N.S.: Comparison of direct blind deconvolution methods for motion-blurred images. Appl. Opt. 38(20), 4325–4332 (1999)CrossRefGoogle Scholar
  27. 27.
    Loyev V., Yitzhaky Y.: Initialization of iterative parametric algorithms for blind de-convolution of motion-blurred images. Appl. Opt. 45(11), 2444–2452 (2006)CrossRefGoogle Scholar
  28. 28.
    Winkler, S. Süsstrunk, S.: Visibility of noise in natural images. In: Proceedings of SPIE/IS&T Human Vision and Electronic Imaging, San Jose, CA, vol. 5292, pp. 18–22 (2004)Google Scholar
  29. 29.
    Meer P., Jolion J.-M., Rosenfeld A.: A fast parallel algorithm for blind estimation of noise variance. IEEE Trans. Pattern Anal. Mach. Intell. 12(2), 216–223 (1990)CrossRefGoogle Scholar
  30. 30.
    Corner B.R., Narayanan R.M., Reichenbach S.E.: Noise estimation in remote sensing imagery using data masking. Int. J. Remote Sens. 24(4), 689–702 (2003)CrossRefGoogle Scholar
  31. 31.
    Rank, K., Lendl, M., Unbehauen, R.: Estimation of image noise variance. In: IEEE Proceedings of Vision, Image and Signal Processing, vol. 146(2), pp. 80–84 (1999)Google Scholar
  32. 32.
    Amer, A., Mitiche, A., Dubois, E.: Reliable and fast structure- oriented video noise estimation. In: Proceedings of Image Processing, 2002 International conference on Image Processing, vol. 1, pp. 840–843 (2002)Google Scholar
  33. 33.
    Li, X.: Blind image quality assessment. In: Proceedings of Image Processing (ICIP2002), 2002 IEEE International Conference, vol. 1, pp. 1-449–1-452 (2002)Google Scholar
  34. 34.
    Brandão T., Queluz M.P.: No-reference image quality assessment based on DCT domain statistics. Signal Process. 88(4), 822–833 (2008)MATHCrossRefGoogle Scholar
  35. 35.
    Gabarda S., Cristóbal G.: Blind image quality assessment through anisotropy. J. Opt. Soc. Am. 24(12), B42–B51 (2007)CrossRefGoogle Scholar
  36. 36.
    Hunt B.R.: Image restoration. In: Ekstrom, M.P.(eds) Digital Image Processing Techniques, pp. 53–76. Academic Press, Orlando (1984)Google Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  1. 1.Department of Electro-Optics EngineeringBen-Gurion UniversityBeer-ShevaIsrael

Personalised recommendations