Signal, Image and Video Processing

, Volume 4, Issue 1, pp 105–121 | Cite as

Image-adaptive watermarking using 2D chirps

  • Yimin Zhang
  • Bijan G. MobasseriEmail author
  • Behzad M. Dogahe
  • Moeness G. Amin
Original Paper


Linear chirps, a special case of polynomial phase exponentials, have recently been proposed for digital watermarking. In this work, we propose a known-host-state methodology for designing image watermarks that are robust to compression. We use a two-dimensional frequency-modulated chirp as a spreading function in a block-based spatial watermarking scheme. In each block, the chirp is used to embed binary phase information. Chirp parameters allow for spectral shaping of the watermark to match host content. Since host state is known to the embedder, it is possible to tune the chirp for optimum performance, particularly against compression. In contrast to existing chirp watermarking where only a single watermark is generally embedded, the proposed block chirp watermarking allows for a much higher payload. Detection is done using chirp transform subject to key exchange for security. We show that the proposed method significantly outperforms non-adaptive watermarking across all compression factors under variety of attacks.


Digital watermarking Time–frequency Chirp Frequency-modulated function Compression Attack 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Langelaar G.C., Setyawan I., Lagendijk R.L.: Watermarking digital image and video data. IEEE Signal Processing Mag. 17(5), 20–46 (2000)CrossRefGoogle Scholar
  2. 2.
    Kayshan A.S.: Representation and analysis of complex chirp signals. Signal Processing 66, 111–116 (1998)CrossRefGoogle Scholar
  3. 3.
    Chen V.C., Liang H.: Time–Frequency Transforms for Radar Imaging and Signal Analysis. Artech House, London (2002)zbMATHGoogle Scholar
  4. 4.
    Stanković S., Djurović I., Pitas I.: Watermarking in the space/spatial-frequency domain using two-dimensionall Radon–Wigner distribution. IEEE Trans. Image Processing 10, 650–658 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Mobasseri, B.G.: Digital watermarking in the joint time– frequency domain. In: Proc. IEEE International Conference on Image Processing, vol. 3, pp. 481–484 (2002)Google Scholar
  6. 6.
    Mobasseri, B., Zhang, Y., Dogahe, B.M., Amin, M.G.: Designing robust watermarks using polynomial phase exponentials. In: IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Philadelphia, PA, March (2005)Google Scholar
  7. 7.
    Zhang, Y., Dogahe, B.M., Amin, M.G., Mobasseri, B.: Digital watermarking using two-dimensional FM waveforms. In: Advanced Signal Processing Algorithms, Architectures, and Implementations XIV, vol. 5599, pp. 277–288. SPIE (2004)Google Scholar
  8. 8.
    Aviyente, S., Al-khassaweneh, M.: Robust watermarking in the joint spatial-spectral domain. IEEE Digital Signal Processing Workshop, Taos Ski Valley, NM (2004)Google Scholar
  9. 9.
    Barkat B., Sattar F.: A new time–frequency based private fragile watermarking scheme for image authentication. IEEE Int. Symp. Signal Processing Appl. 2, 363–366 (2003)Google Scholar
  10. 10.
    Ramalingam A., Krishnan S.: Robust image watermarking using a chirp detection-based technique. IEE Proc. 152(6), 771–778 (2005)CrossRefGoogle Scholar
  11. 11.
    Hernández J.R., Amado M., Pérez-González F.: DCT-domain watermarking techniques for still images: detector performance analysis and a new Structure. IEEE Trans. Image Processing 9(1), 55–68 (2000)CrossRefGoogle Scholar
  12. 12.
    Erkucuk S., Krishnan S., Zeytinoglu M.: A Robust audio watermark representation based on linear chirps. IEEE Trans. Multimedia 8(5), 925–936 (2006)CrossRefGoogle Scholar
  13. 13.
    Le L., Krishnan S.: Time–frequency signal synthesis and its application in multimedia watermark detection. EURASIP J. Appl. Signal Processing 2006(5), 925–936 (2006)MathSciNetGoogle Scholar
  14. 14.
    Kutter M., Winkler S.: A vision-based masking model for spread-spectrum image watermarking. IEEE Trans. Image Processing 11, 16–25 (2002)CrossRefGoogle Scholar
  15. 15.
    Cohen L.: Time–Frequency Analysis. Prentice Hall, Upper Saddle River (1995)Google Scholar
  16. 16.
    Papandreou-Suppappola A.: Applications in Time–Frequency Signal Processing. CRC Press, Boca Raton (2003)Google Scholar
  17. 17.
    Shen H., Machineni S., Gupta C., Papandreou-Suppappola A.: Time-varying multichirp rate modulation for multiple access systems. IEEE Signal Processing Lett. 11(5), 497–500 (2004)CrossRefGoogle Scholar
  18. 18.
    Avcibas I., Memon N., Sankur B.: Steganalysis using image quality metrics. IEEE Trans. Image Processing 12(2), 221–229 (2003)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Sheikh H., Bovik A.: Image information and visual quality. IEEE Trans. Image Processing 15(2), 430–444 (2006)CrossRefGoogle Scholar
  20. 20.
    Ebrahimi F., Chamik M., Winkler S.: JPEG vs. JPEG 2000: an objective comparison of image encoding quality. Proc. SPIE Appl. Digital Image Processing XXVII 5558, 303–308 (2004)Google Scholar
  21. 21.
    Watson, A.B.: Visula optimization of DCT quantization matrices for individual images. In: Proc. AIAA Computing in Aerospace, vol. 9, pp. 286–291, San Diego, CA (1993)Google Scholar
  22. 22.
    Fleming, C.E., Mobasseri, B.G.: Compression and rotation resistant watermark using a circular chirp structure. In: Proc. SPIE Conference Security, Steganography, and Watermarking of Multimedia Contents VIII, San Jose, CA, Jan. (2006)Google Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • Yimin Zhang
    • 1
  • Bijan G. Mobasseri
    • 1
    Email author
  • Behzad M. Dogahe
    • 1
  • Moeness G. Amin
    • 1
  1. 1.Center for Advanced CommunicationsVillanova UniversityVillanovaUSA

Personalised recommendations