Signal, Image and Video Processing

, Volume 4, Issue 1, pp 99–104 | Cite as

Self-organization of sensor networks for detection of pervasive faults

  • Abhishek Srivastav
  • Asok RayEmail author
Original Paper


Resource aware operation of sensor networks requires adaptive re-organization to dynamically adapt to the operational environment. A complex dynamical system of interacting components (e.g., computer network and social network) is represented as a graph, component states as spins, and interactions as ferromagnetic couplings. Using an Ising-like model, the sensor network is shown to adaptively self-organize based on partial observation, and real-time monitoring and detection is enabled by adaptive redistribution of limited resources. The algorithm is validated on a test-bed that simulates the operations of a sensor network for detection of percolating faults (e.g. computer viruses, infectious disease, chemical weapons, and pollution) in an interacting multi-component complex system.


Sensor network Graph theory Ising model Pervasive faults 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., Turon, M.: Wireless sensor networks for structural health monitoring. In: SenSys ’06: Proc. of the 4th Intl. Conf. on Embedded Networked Sensor Systems, pp. 427–428. ACM, New York (2006)Google Scholar
  2. 2.
    Brooks R., Friedlander D., Koch J., Phoha S.: Tracking multiple targets with self-organizing distributed ground sensors. J. Parallel Distrib. Comput. 64(7), 874–884 (2004)CrossRefGoogle Scholar
  3. 3.
    Szewczyk R., Osterweil E., Polastre J., Hamilton M., Mainwaring A., Estrin D.: Habitat monitoring with sensor networks. Commun. ACM 47(6), 34–40 (2004)CrossRefGoogle Scholar
  4. 4.
    Akyildiz I., Su W., Sankarasubramaniam Y., Cayirci E.: Wireless sensor networks: a survey. Comput. Netw. 38, 393–422 (2002)CrossRefGoogle Scholar
  5. 5.
    Ray A.: Symbolic dynamic analysis of complex systems for anomaly detection. Signal Processing 84(7), 1115–1130 (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Albért R., Barabási A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)CrossRefGoogle Scholar
  7. 7.
    Bianconi G., Barabási A.-L.: Bose–Einstein condensation in complex networks. Phys. Rev. Lett. 86, 5632–5635 (2001)CrossRefGoogle Scholar
  8. 8.
    Strogatz S.: Exploring complex netwoks. Nature (London) 410, 268–276 (2001)CrossRefGoogle Scholar
  9. 9.
    Huang K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987)zbMATHGoogle Scholar
  10. 10.
    Gupta S., Ray A.: Pattern identification using lattice spin systems: a thermodynamic formalism. Appl. Phys. Lett. 91(19), 194105 (2007)CrossRefGoogle Scholar
  11. 11.
    Greco A., Carbone V., Sorriso-Valvo L.: Non-poisson intermittent events in price formation in a Ising spin model of market. Physica A Stat. Mech. Appl. 376, 480–486 (2007)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Bakk A., Høye J.: One-dimensional Ising model applied to protein folding. Phys. A 323(1–4), 504–518 (2003)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Indekeu J.: Special attention network. Physica A Stat. Mech. Appl. 333, 461–464 (2004)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Newman M., Barkema G.: Monte Carlo Methods in Statistical Physics. Oxford University Press, New York (1999)zbMATHGoogle Scholar
  15. 15.
    Srivastav A., Ray A., Gupta S.: An information-theoretic measure for anomaly detection in complex dynamical systems. Mech. Syst. Signal Processing 23(2), 358–371 (2009)CrossRefGoogle Scholar
  16. 16.
    Hethcote H.W.: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Cover T., Thomas J.: Elements of Information Theory. Wiley, New York (1991)CrossRefzbMATHGoogle Scholar
  18. 18.
    Schreiber T.: Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations