Invariant gait continuum based on the duty-factor

Original Paper

Abstract

In this paper, we present a method to describe the continuum of human gait in an invariant manner. The gait description is based on the duty-factor which is adopted from the biomechanics literature. We generate a database of artificial silhouettes representing the three main types of gait, i.e. walking, jogging, and running. By generating silhouettes from different camera angles we make the method invariant to camera viewpoint and to changing directions of movement. Silhouettes are extracted using the Codebook method and represented in a scale- and translation-invariant manner by using shape contexts and tangent orientations. Input silhouettes are matched to the database using the Hungarian method. We define a classifier based on the dissimilarity between the input silhouettes and the gait actions of the database. This classification achieves an overall recognition rate of 87.1% on a diverse test set, which is better than that achieved by other approaches applied to similar data. We extend this classification and results show that our representation of the gait continuum preserves the main features of the duty-factor.

Keywords

Computer vision Human motion Gait analysis Action recognition Gait continuum 

References

  1. 1.
    Alexander R.: Optimization and gaits in the locomotion of vertebrates. Physiol. Rev. 69(4), 1199–1227 (1989)Google Scholar
  2. 2.
    Alexander R.: Energetics and optimization of human walking and running: the 2000 Raymond Pearl Memorial Lecture. Am. J. Hum. Biol. 14(5), 641–648 (2002)CrossRefGoogle Scholar
  3. 3.
    Belongie S., Malik J., Puzicha J.: Shape matching and object recognition using shape contexts. PAMI 24(4), 509–522 (2002)Google Scholar
  4. 4.
    Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: ICCV (2005)Google Scholar
  5. 5.
    Collins, R., Gross, R., Shi, J.: Silhouette-based human identification from body shape and gait. In: FGR (2002)Google Scholar
  6. 6.
    Cutler R., Davis L.S.: Robust real-time periodic motion detection, analysis, and applications. PAMI 22(8), 781–796 (2000)Google Scholar
  7. 7.
    Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior Recognition via Sparse Spatio-Temporal Features. In: VS-PETS (2005)Google Scholar
  8. 8.
    Fihl, P., Corlin, R., Park, S., Moeslund, T., Trivedi, M.: Tracking of individuals in very long video sequences. In: Int. Symposium on Visual Computing. Lake Tahoe, Nevada, USA (2006)Google Scholar
  9. 9.
    Jiang, H., Drew, M.S., Li, Z.N.: Successive convex matching for action detection. In: CVPR (2006)Google Scholar
  10. 10.
    Kim K., Chalidabhongse T., Harwood D., Davis L.: Real-time foreground–background segmentation using codebook model. Real-time Imaging 11(3), 172–185 (2005)CrossRefGoogle Scholar
  11. 11.
    Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR. Alaska, USA (2008)Google Scholar
  12. 12.
    Liu, Z., Malave, L., Osuntugun, A., Sudhakar, P., Sarkar, S.: Towards Understanding the limits of gait recognition. In: Int. Symposium on Defense and Security. Orlando, Florida, USA (2004)Google Scholar
  13. 13.
    Liu Z., Sarkar S.: Improved gait recognition by gait dynamics normalization. PAMI 28(6), 863–876 (2006)Google Scholar
  14. 14.
    Masoud O., Papanikolopoulos N.: A method for human action recognition. Image Vis. Comput. 21(8), 729–743 (2003)CrossRefGoogle Scholar
  15. 15.
    Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. In: BMVC (2006)Google Scholar
  16. 16.
    Papadimitriou C., Steiglitz K.: Combinatorial Optimization: Algorithms and Complexity. Courier Dover Publications, Mineola, NY, USA (1998)MATHGoogle Scholar
  17. 17.
    Patron, A., Reid, I.: A probabilistic framework for recognizing similar actions using spatio-temporal features. In: BMVC (2007)Google Scholar
  18. 18.
    Ran Y., Weiss I., Zheng Q., Davis L.S.: Pedestrian detection via periodic motion analysis. IJCV 71(2), 143–160 (2007)CrossRefGoogle Scholar
  19. 19.
    Robertson, N., Reid, I.: Behaviour understanding in video: a combined method. In: ICCV (2005)Google Scholar
  20. 20.
    Schüldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: ICPR (2004)Google Scholar
  21. 21.
    Tenenbaum J., Silva V., Langford J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  22. 22.
    CMU Graphics Lab Motion Capture Database (2007). http://mocap.cs.cmu.edu/
  23. 23.
    Poser (ver. 6.0.3.140) (2007). http://www.e-frontier.com/go/poser/
  24. 24.
    Troje N.F.: Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. J. Vis. 2(5), 371–387 (2002)CrossRefGoogle Scholar
  25. 25.
    Veeraraghavan A., Roy-Chowdhury A., Chellappa R.: Matching shape sequences in video with applications in human movement analysis. PAMI 27(12), 1896–1909 (2005)Google Scholar
  26. 26.
    Viola P., Jones M.J., Snow D.: Detecting pedestrians using patterns of motion and appearance. IJCV 63(2), 153–161 (2005)CrossRefGoogle Scholar
  27. 27.
    Wang L., Tan T.N., Ning H.Z., Hu W.M.: Fusion of static and dynamic body biometrics for gait recognition. IEEE Trans. Circuits Syst. Video Technol. 14(2), 149–158 (2004)CrossRefGoogle Scholar
  28. 28.
    Whittle M.W.: Gait Analysis: An Introduction. Butterworth-Heinemann Ltd., London (2001)Google Scholar
  29. 29.
    Wong, S.F., Cipolla, R.: Extracting spatiotemporal interest points using global information. In: ICCV. Rio de Janeiro, Brazil (2007)Google Scholar
  30. 30.
    Yam, C., Nixon, M., Carter, J.: On the relationship of human walking and running: automatic person identification by gait. In: ICPR (2002)Google Scholar
  31. 31.
    Yang, H.D., Park, A.Y., Lee, S.W.: Human–robot interaction by whole body gesture spotting and recognition. In: ICPR (2006)Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  1. 1.Laboratory of Computer Vision and Media TechnologyAalborg UniversityAalborgDenmark

Personalised recommendations