Signal, Image and Video Processing

, Volume 2, Issue 4, pp 355–370 | Cite as

Using MPEG-21 for cross-layer multimedia content adaptation

  • Ingo KoflerEmail author
  • Joachim Seidl
  • Christian Timmerer
  • Hermann Hellwagner
  • Ismail Djama
  • Toufik Ahmed
Original Paper


This paper presents a cross-layer model— formulated using interoperable description formats—for the adaptation of scalable H.264/MPEG-4 AVC (i.e., SVC) content in a video streaming system operating on a Wireless LAN access network without QoS mechanisms. SVC content adaptation on the server takes place on the application layer using an adaptation process compliant with the MPEG-21 Digital Item Adaptation (DIA) standard, based on input comprised of MPEG-21 DIA descriptions of content and usage environment parameters. The latter descriptions integrate information from different layers, e.g., device characteristics and packet loss rate, in an attempt to increase the interoperability of this cross-layer model, thus making it applicable to other models. For the sake of deriving model parameters, performance measurements from two wireless access point models were taken in account. Throughout the investigation it emerged that the behavior of the system strongly depends on the access point. Therefore, we investigated the use of end-to-end-based rate control algorithms for steering the content adaptation. Simulations of rate adaptation algorithms were subsequently performed, leading to the conclusion that a TFRC-based adaptation technique (TCP-Friendly Rate Control) performs quite well in adapting to limited bandwidth and varying network conditions. In the paper we demonstrate how TFRC-based content adaptation can be realized using MPEG-21 tools.


Multimedia content adaptation Cross-layer design MPEG-21 Digital Item Adaptation Rate control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmed T., Mehaoua A., Boutaba R., Iraqi Y.: Adaptive packet video streaming over IP networks: a cross-layer approach. IEEE J Selected Areas Commun (JCAS) 23(2), 385–401 (2005)CrossRefGoogle Scholar
  2. 2.
    Bansal, D., Balakrishnan, H., Floyd, S., Shenker, S.: Dynamic behavior of slowly-responsive congestion control algorithms. In: Proceedings of SIGCOMM 2001, San Diego, pp. 263–274 (2001)Google Scholar
  3. 3.
    Burnett, I., Koenen, R., Pereira, F., VandeWalle, R. (eds): The MPEG-21 Book. Wiley, London (2006)Google Scholar
  4. 4.
    Choi L., Kellerer W., Steinbach E.: On cross-layer design for streaming video delivery in multiuser wireless environments. EURASIP J Wireless Commun Network 1–10 (2006)Google Scholar
  5. 5.
    Djama I., Ahmed T., Nafaa A., Boutaba R.: Meet in the middle cross-layer adaptation for audiovisual content delivery. IEEE Trans Multimed 10, 105–120 (2008)CrossRefGoogle Scholar
  6. 6.
    Dunn J., Neufeld M., Sheth A., Grunwald D., Bennett J.: A practical cross-layer mechanism for fairness in 802.11 networks. Mobile Networks Appl 11(1), 37–45 (2006)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Darwin Streaming Server homepage.
  9. 9.
    ENTHRONE project.
  10. 10.
    Floyd, S., Handley, M., Padhye, J., Widmer, J.: Equation-based congestion control for unicast applications. In: Proceedings of SIGCOMM 2000, Stockholm, pp. 43–56 (2000)Google Scholar
  11. 11.
    Floyd, S., Handley, M., Padhye, J., Widmer, J.: TCP-friendly congestion control for unicast applications. Presentation. (2000)
  12. 12.
    Floyd, S., Henderson, T.: The NewReno modification to TCP’s fast recovery algorithm. RFC 2582. (1999)
  13. 13.
    Floyd S., Jacobson V.: Random early detection gateways for congestion avoidance. IEEE/ACM Trans Network 1(4), 397–413 (1993)CrossRefGoogle Scholar
  14. 14.
    Foh C., Zhang Y., Ni Z., Cai J., Ngan K.: Optimized cross-layer design for scalable video transmission over the IEEE 802.11e networks. IEEE Trans Circuits Syst Video Technol 17(12), 1665–1678 (2007)CrossRefGoogle Scholar
  15. 15.
    Gpac open source project.
  16. 16.
    Handley, M., Floyd, S., Padhye, J., Widmer, J.: RFC 3448: TCP friendly rate control (TFRC): protocol specification. (2003)
  17. 17.
    Handley, M., Floyd, S., Padhye, J., Widmer, J.: Internet draft rfc3448bis-06b: TCP friendly rate control (TFRC): protocol specification. 6b.txt (2008)
  18. 18.
    Hassan, S., Kara, M.: Simulation-based performance comparison of TCP-friendly congestion control protocols. In: Proceedings of the 16th Annual UK Performance Engineering Workshop (UKPEW’00), Durham, pp. 199–210 (2000)Google Scholar
  19. 19.
    Hutter, A., Amon, P., Panis, G., Delfosse, E., Ransburg, M., Hellwagner, H.: Automatic adaptation of streaming multimedia content in a dynamic and distributed environment. In: Proceedings of the International Conference on Image Processing (ICIP 2005), Genova (2005)Google Scholar
  20. 20.
    Kawadia V., Kumar P.: A cautionary perspective on cross layer design. IEEE Wireless Commun Mag 12(1), 3–11 (2005)CrossRefGoogle Scholar
  21. 21.
    Khan S., Peng Y., Steinbach E., Sgroi M., Kellerer W.: Application-driven cross-layer optimization for video streaming over wireless networks. IEEE Commun Mag 44, 122–130 (2006)CrossRefGoogle Scholar
  22. 22.
    Kofler, I., Prangl, M., Kuschnig, R., Hellwagner, H.: An H.264/SVC-based adaptation proxy on a WiFi router. In: Proceedings of the 18th International Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV 2008), Braunschweig, pp. 63–68 (2008)Google Scholar
  23. 23.
    Kofler, I., Timmerer, C., Hellwagner, H., Hutter, A., Sanahuja, F.: Efficient MPEG-21-based adaptation decision-taking for scalable multimedia content. In: Proceedings of the 14th SPIE Annual Electronic Imaging Conference—Multimedia Computing and Networking (MMCN 2007) San Jose (2007)Google Scholar
  24. 24.
    Krishnamachari, S., van der Schaar, M., Choi, S., Xu, X.: Video streaming over wireless LANs: a cross-layer approach. In: Proceedings of the 13th International Packetvideo Workshop 2003. Nantes (2003)Google Scholar
  25. 25.
    Libxslt XSLT processor homepage.
  26. 26.
    Malli, M., Ni, Q., Turletti, T., Barakat, C.: Adaptive fair channel allocation for QoS enhancement in IEEE 802.11 wireless LANs. In: Proceedings of the IEEE International Conference on Communications (ICC). Paris (2004)Google Scholar
  27. 27.
    Mukherjee D., Delfosse E., Kim J., Wang Y.: Optimal Adaptation Decision-Taking for Terminal and Network Quality of Service. IEEE Trans Multimed 7(3), 454–462 (2005)CrossRefGoogle Scholar
  28. 28.
    Ni Q., Romdhani L., Turletti T.: A survey on QoS enhancements for IEEE 802.11 wireless LAN. J Wireless Commun Mobile Comput 4, 547–566 (2004)CrossRefGoogle Scholar
  29. 29.
    Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP throughput: a simple model and its empirical validation. In: Proceedings of the ACM SIGCOMM 1998. ACM Press, New York, pp. 303–314 (1998)Google Scholar
  30. 30.
    Qiong L., van der Schaar M.: Providing adaptive QoS to layered video over wireless local are networks through real-time retry limit adaptation. IEEE Trans Multimed 6(2), 278–290 (2004)CrossRefGoogle Scholar
  31. 31.
    Ransburg, M., Gressl, H., Hellwagner, H.: Efficient transformation of MPEG-21 metadata for codec-agnostic adaptation in real-time streaming scenarios. In: Proceedings of the 9th International Workshop on Image Analysis for Interactive Multimedia Services (WIAMIS 2008), Klagenfurt (2008)Google Scholar
  32. 32.
    Rejaie, R., Handley, M., Estrin, D.: Quality adaptation for congestion controlled video playback over the internet. In: Proceedings of SIGCOMM 1999, Cambridge, pp. 189–200 (1999)Google Scholar
  33. 33.
    Rejaie, R., Handley, M., Estrin, D.: RAP: an end-to-end rate-based congestion control mechanism for realtime streams in the internet. In: Proceedings of IEEE INFOCOM 1999, New York, vol. 3, pp. 1337–1345 (1999)Google Scholar
  34. 34.
    Rosenberg, J., Schulzrinne, H.: An RTP payload format for generic forward error correction. RFC 273.
  35. 35.
    Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A transport protocol for real-time applications. RFC 3550. (2003)
  36. 36.
    Schwarz H., Marpe D., Wiegand T.: Overview of the Scalable Video Coding Extension of the H.264/AVC Standard. IEEE Trans Circuits Syst Video Technol 17(9), 1103–1120 (2007)CrossRefGoogle Scholar
  37. 37.
    Sisalem D., Schulzrinne H.: The loss-delay based adjustment algorithm: a TCP-friendly adaptation scheme. In: Proceedings of NOSSDAV 1998. Cambridge (1998)Google Scholar
  38. 38.
    Streaming transformations for XML (STX).
  39. 39.
    Sisalem, D., Wolisz, A.: LDA+: TCP-friendly adaptation: a measurement and comparison study. In: Proceedings of the 10th International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV 2000), Chapel Hill (2000)Google Scholar
  40. 40.
    Timmerer C., Hellwagner H.: Interoperable adaptive multimedia communication. IEEE Multimed Mag 12(1), 74–79 (2005)CrossRefGoogle Scholar
  41. 41.
    Timmerer, C., Ransburg, M., Kofler, I., Hellwagner, H., Souto, P., Andrade, M., Carvalho, P., Castro, H., Sidibe, M., Mehaoua, A., Fang, L., Lindsay, A., MacKay, M., Lugmayr, A., Feiten, B.: An integrated management supervisor for end-to-end management of heterogeneous contents, networks, and terminals enabling quality of service. In: Proceedings of the 2nd European Symposium on Mobile Media Delivery (EUMOB) 2008, Oulu (2008)Google Scholar
  42. 42.
    The network simulator ns-2: documentation.
  43. 43.
    van der Schaar M., Shankar N.S.: Cross-layer wireless multimedia transmission: challenges, principles and new paradigms. IEEE Wireless Commun Mag 12(4), 50–58 (2005)CrossRefGoogle Scholar
  44. 44.
    Vetro A.: MPEG-21 digital item adaptation: enabling universal multimedia access. IEEE MultiMed 11(1), 84–87 (2004)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Wenger, S., Wang, Y.K., Schierl, T., Eleftheriadis, A.: RTP payload format for SVC video. Internet draft draft-ietf-avt-rtp-svc-13. .txt (2008)
  46. 46.
    Widmer J., Denda R., Mauve M.: A survey on TCP-friendly congestion control. IEEE Network 15(3), 28–37 (2001)CrossRefGoogle Scholar
  47. 47.
    Wien M., Cazoulat R., Graffunder A., Hutter A., Amon P.: Real-time system for adaptive video streaming based on SVC. IEEE Trans Circuits Syst Video Technol 17(9), 1227–1237 (2007)CrossRefGoogle Scholar
  48. 48.
    XSL transformations (XSLT) 1.0: W3C Recommendation, 16 November 1999. (1999)
  49. 49.
    Yan J., Katrinis K., May M., Plattner B.: Media- and TCP-friendly congestion control for scalable video streams. IEEE Trans Multimed 8(2), 196–206 (2006)CrossRefGoogle Scholar
  50. 50.
    Zufferey, M., Kosch, H.: Semantic adaptation of multimedia content. In: Proceedings of the 48th International Symposium ELMAR-2006 focused on Multimedia Signal Processing and Communications, Zadar, pp. 319–322 (2006)Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Ingo Kofler
    • 1
    Email author
  • Joachim Seidl
    • 1
  • Christian Timmerer
    • 1
  • Hermann Hellwagner
    • 1
  • Ismail Djama
    • 2
  • Toufik Ahmed
    • 2
  1. 1.Institute of Information Technology (ITEC)Klagenfurt UniversityKlagenfurtAustria
  2. 2.CNRS-LaBRI LabUniversity of Bordeaux-1TalenceFrance

Personalised recommendations