Advertisement

Signal, Image and Video Processing

, Volume 2, Issue 4, pp 321–335 | Cite as

Image indexing and retrieval using expressive fuzzy description logics

  • N. Simou
  • Th. Athanasiadis
  • G. Stoilos
  • S. Kollias
Original Paper

Abstract

The effective management and exploitation of multimedia documents requires the extraction of the underlying semantics. Multimedia analysis algorithms can produce fairly rich, though imprecise information about a multimedia document which most of the times remains unexploited. In this paper we propose a methodology for semantic indexing and retrieval of images, based on techniques of image segmentation and classification combined with fuzzy reasoning. In the proposed knowledge-assisted analysis architecture a segmentation algorithm firstly generates a set of over-segmented regions. After that, a region classification process is employed to assign semantic labels using a confidence degree and simultaneously merge regions based on their semantic similarity. This information comprises the assertional component of a fuzzy knowledge base which is used for the refinement of mistakenly classified regions and also for the extraction of rich implicit knowledge used for global image classification. This knowledge about images is stored in a semantic repository permitting image retrieval and ranking.

Keywords

Image indexing and retrieval Semantics Fuzzy description logics Reasoning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamek, T., O’Connor, N., Murphy, N.: Region-based segmentation of images using syntactic visual features. In: Proc. Workshop on Image Analysis for Multimedia Interactive Services, WIAMIS 2005, Montreux, Switzerland, 13–15 April 2005Google Scholar
  2. 2.
    Athanasiadis Th., Mylonas Ph., Avrithis Y., Kollias S.: Semantic image segmentation and object labeling. IEEE Trans. Circuits Syst. Video Technol. 17(3), 298–312 (2007)CrossRefGoogle Scholar
  3. 3.
    Athanasiadis, Th., Tzouvaras, V., Petridis, K., Precioso, F., Avrithis, Y., Kompatsiaris, Y.: Using a multimedia ontology infrastructure for semantic annotation of multimedia content. In: Proceedings of the 5th International Workshop on Knowledge Markup and Semantic Annotation (2005)Google Scholar
  4. 4.
    Baader F., McGuinness D., Nardi D., Patel-Schneider P.F.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2002)Google Scholar
  5. 5.
    Berretti S., Del Bimbo A., Vicario E.: Efficient matching and indexing of graph models in content-based retrieval. IEEE Trans. Circuits Syst. Video Technol. 11(12), 1089–1105 (2001)Google Scholar
  6. 6.
    Borenstein, E., Sharon, E.: Combining top-down and bottom-up segmentation. In: 8th Conference on Computer Vision and Pattern Recognition Workshop, CVPR 2004 (2004)Google Scholar
  7. 7.
    Christel, M.G., Hauptmann, A.G.: The use and utility of high-level semantic features in video retrieval. In: Proceedings of 4th International Conference on Image and Video Retrieval, CIVR 2005, Singapore, July 2005Google Scholar
  8. 8.
    Cross V.: Fuzzy information retrieval. J. Intell. Inform. Syst. 3, 29–56 (1994)CrossRefGoogle Scholar
  9. 9.
    Description-logic knowledge representation system specification from the KRSS group of the ARPA knowledge sharing effort. http://dl.kr.org/krss-spec.ps
  10. 10.
    Giugno, R., Lukasiewicz, T.: P-shoq(d): A probabilistic extension of shoq(d) for probabilistic ontologies in the semantic web. In: JELIA ’02: Proceedings of the European Conference on Logics in Artificial Intelligence, pp. 86–97. Springer, London (2002)Google Scholar
  11. 11.
    Hollink, L., Worring, M., Schreiber, G.: Building a visual ontology for video retrieval. In: Proceedings of the ACM Multimedia (2005)Google Scholar
  12. 12.
    Hoogs, A., Rittscher, J., Stein, G., Schmiederer, J.: Video content annotation using visual analysis and a large semantic knowledgebase. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2003)Google Scholar
  13. 13.
    Horrocks, I., Sattler, U., Tobies, S.: Reasoning with Individuals for the Description Logic \({\mathcal{SHIQ}}\) . In: MacAllester, D. (ed.) CADE-2000, number 1831 in LNAI, pp. 482–496. Springer, Berlin (2000)Google Scholar
  14. 14.
    Kompatsiaris, I., Papadopoulos, G., Mezaris, V., Strintzis, M.: Combining global and local information for knowledge-assisted image analysis and classification. EURASIP Journal on Advances in Signal Processing, Special Issue on Knowledge-Assisted Media Analysis for Interactive Multimedia Applications, accepted for publication (2007)Google Scholar
  15. 15.
    Klir G.J., Yuan B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  16. 16.
    Kumar, M.P., Torr, P.H.S., Zisserman, A.: OBJ CUT. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Diego (2005)Google Scholar
  17. 17.
    Mazzieri, M., Dragoni, A.F.: A fuzzy semantics for semantic web languages. In: ISWC-URSW, pp. 12–22 (2005)Google Scholar
  18. 18.
    Morris O.J., Lee M.J., Constantinides A.G.: Graph theory for image analysis: an approach based on the shortest spanning tree. Inst. Elect. Eng. 133, 146–152 (1986)Google Scholar
  19. 19.
    Mylonas, P., Athanasiadis, T., Wallace, M., Avrithis, Y., Kollias, S.: Semantic representation of multimedia content: Knowledge representation and semantic indexing. Multimed. Tools Appl. (in press)Google Scholar
  20. 20.
    Naphade M., Huang T.S.: A probabilistic framework for semantic video indexing, filtering and retrieval. IEEE Trans. Multimed. 3(1), 144–151 (2001)Google Scholar
  21. 21.
    Naphade M., Smith J., Tesic J., Chang S.-F., Hsu W., Kennedy L., Hauptmann A., Curtis J.: Large-scale concept ontology for multimedia. IEEE Multimed. 13(3), 86–91 (2006)CrossRefGoogle Scholar
  22. 22.
    Pan, J.Z., Stamou, G., Stoilos, G., Thomas, E.: Expressive querying over fuzzy DL-Lite ontologies. In: Proceedings of the International Workshop on Description Logics (DL 2007) (2007)Google Scholar
  23. 23.
    Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Semantics and Abstract Syntax. Technical report, W3C, Feb. 2004. W3C Recommendation. http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
  24. 24.
    Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF, 2006. W3C Working Draft. http://www.w3.org/TR/rdf-sparql-query/
  25. 25.
    Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: MIR ’06: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, pp. 321–330. ACM Press, New York (2006)Google Scholar
  26. 26.
    Smith J.R.: Video indexing and retrieval using MPEG-7. CRC Press, Boca Raton (2004)Google Scholar
  27. 27.
    Snoek C., Huurninkm B., Hollink L., de Rijke M., Schreiber G., Worring M.: Adding semantics to detectors for video retrieval. IEEE Trans. Multimed. 9(5), 144–151 (2007)CrossRefGoogle Scholar
  28. 28.
    Snoek C.G.M., Huurnink B., Hollink L., de Rijke M., Schreiber G., Worring M.: Adding semantics to detectors for video retrieval. IEEE Trans. Multimed. 9(5), 975–986 (2007)CrossRefGoogle Scholar
  29. 29.
    Stoilos G., Stamou G., Tzouvaras V., Pan J.Z., Horrocks I.: Reasoning with very expressive fuzzy description logics. J. Artif. Intell. Res. 30(5), 273–320 (2007)MathSciNetGoogle Scholar
  30. 30.
    Straccia U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res. 14, 137–166 (2001)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Vaneková, V., Bella, J., Gurský, P., Horváth, T.: Fuzzy RDF in the semantic web: deduction and induction. In: Proceedings of Workshop on Data Analysis (WDA 2005), pp. 16–29 (2005)Google Scholar
  32. 32.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2001)Google Scholar
  33. 33.
    Zhang, L., Lin, F., Zhang, B.: Support vector machine learning for image retrieval. Image Processing, 2001. In: Proceedings. 2001 International Conference on, 2 (2001)Google Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • N. Simou
    • 1
  • Th. Athanasiadis
    • 1
  • G. Stoilos
    • 1
  • S. Kollias
    • 1
  1. 1.Image Video and Multimedia Systems Laboratory, School of Electrical and Computer EngineeringNational Technical University of AthensZografouGreece

Personalised recommendations