Signal, Image and Video Processing

, Volume 2, Issue 3, pp 251–260 | Cite as

Dynamically restricted codebook-based vector quantisation scheme for mesh geometry compression

  • Zhe-Ming LuEmail author
  • Zhen Li
Original Paper


The transmission and storage of large amounts of vertex geometry data are required for rendering geometrically detailed 3D models. To alleviate bandwidth requirements, vector quantisation (VQ) is an effective lossy vertex data compression technique for triangular meshes. This paper presents a novel vertex encoding algorithm using the dynamically restricted codebook-based vector quantisation (DRCVQ). In DRCVQ, a parameter is used to control the encoding quality to get the desired compression rate in a range with only one codebook, instead of using different levels of codebooks to get different compression rate. During the encoding process, the indexes of the preceding encoded residual vectors which have high correlation with the current input vector are prestored in a FIFO so that both the codevector searching range and bit rate are averagely reduced. The proposed scheme also incorporates a very effective Laplacian smooth operator. Simulation results show that for various size of mesh models, DRCVQ can reduce PSNR degradation of about 2.5–6 dB at 10 bits per vertex comparative to the conventional vertex encoding method with stationary codebooks and, DRCVQ with arithmetic coding of codevector indexes and Laplacian smoothener can outperform the state-of-art Wavemesh for non-smooth meshes while performing slightly worse for smooth meshes. In addition, we use MPS as codevector search acceleration scheme so that the compression scheme is real-time.


Computer graphics Vertex data compression Vector quantisation Dynamically restricted codebook 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rossignac, J.: Edgebreaker: connectivity compression for triangle meshes. IEEE Trans. Visual. Comput. Graph. 5(1), 47–61 (1999)CrossRefGoogle Scholar
  2. 2.
    King, D., Rossignac, J.: Guaranteed 3.67  V bit encoding of planar triangle graphs. In: 11th Canadian Conference on Computational Geometry, pp. 146–149 (1999)Google Scholar
  3. 3.
    Gumhold, S.: New bounds on the encoding of planar triangulations. Technical Report WSI-2000-1, University of Tubingen (2000)Google Scholar
  4. 4.
    Cohen-Or, D., Levin, D., Remez, O.: Progressive compression of arbitrary triangular meshes. In: Proc. IEEE Visualization ’99, pp. 67–72 (1999)Google Scholar
  5. 5.
    Szymczak, A., King, D., Rossignac, J.: An edgebreaker-based efficient compression scheme for regular meshes. Comput. Geom. 20(1–2), 53–68 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Isenburg, M., Snoeyink, J.: Spirale reversi: reverse decoding of the edgebreaker encoding. In: Proceedings of 12th Canadian Conference on Computational Geometry, pp. 247–256 (2000)Google Scholar
  7. 7.
    Touma, C., Gotsman, C.: Triangle mesh compression. In: Graphics Interface 98 Conference Proceedings, pp. 26–34 (1998)Google Scholar
  8. 8.
    Bajaj, C., Pascucci, V., Zhuang, G.: Single-resolution compression of arbitrary triangular meshes with properties. In: Proc. Data Compression Conf. (DCC’99), pp. 247–256 (1999)Google Scholar
  9. 9.
    Gumhold, S., Straßer, W.: Real time compression of triangle mesh connectivity. In: Proc. ACM SIGGRAPH’98, pp. 133–140 (1998)Google Scholar
  10. 10.
    Isenburg, M., Snoeyink, J.: Mesh collapse compression. In: Proceedings of SIBGRAPI’99, Campinas, pp. 27–28 (1999)Google Scholar
  11. 11.
    Cohen, R., Cohen-Or, D., Ironi, T.: Multi-way geometry encoding. Technical report (2002)Google Scholar
  12. 12.
    Evans, F., Skiena, S., Varshney, A.: Optimizing triangle strips for fast rendering. In: Proc. IEEE Visualization’96, pp. 319–326 (1996)Google Scholar
  13. 13.
    Hoppe, H.: Optimization of mesh locality for transparent vertex caching. In: Proc. ACM SIGGRAPH’99, pp. 269–276 (1999)Google Scholar
  14. 14.
    Deering, M.F.: Geometry compression. In: Proc. ACM SIGGRAPH’95, pp. 13–20 (1995)Google Scholar
  15. 15.
    Chow, M.M.: Optimized geometry compression for real-time rendering. In: Proc. IEEE Visualization’97, pp. 346–354 (1997)Google Scholar
  16. 16.
    Gray, R.M.: Vector quantization. IEEE ASSP MAGAZINE (1984)Google Scholar
  17. 17.
    Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer, Norwell (1992)zbMATHGoogle Scholar
  18. 18.
    Sun Microsystems: The Java3D API Specification. (1999)Google Scholar
  19. 19.
    Taubin, G., Rossignac, J.: Geometric compression through topological surgery. ACM Trans. Graph. 17(2), 84–115 (1998)CrossRefGoogle Scholar
  20. 20.
    Taubin, G., Horn, W., Rossignac, J., Lazarus, F.: Geometry coding and VRML. In: Proc. IEEE 86(6), 1228–1243 (1998)CrossRefGoogle Scholar
  21. 21.
    Lee, E., Ko, H.: Vertex data compression for triangular meshes. In: Proceedings of Pacific Graphics, pp. 225–234 (2000)Google Scholar
  22. 22.
    Chou, P.H., Meng, T.H.: Vertex data compression through vector quantization. IEEE Trans. Visual. Comput. Graph. 8(4), 373–382 (2002)CrossRefGoogle Scholar
  23. 23.
    Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: ACM SIGGRAPH Conference Proceedings, pp. 279–286 (2000)Google Scholar
  24. 24.
    Karni, Z., Gotsman, C.: 3D mesh compression using fixed spectral bases. In: Proceedings of Graphics Interface, Ottawa, pp. 1–8 (2001)Google Scholar
  25. 25.
    Sorkine, O., Cohen-Or, D., Toldeo, S.: High-pass quantization for mesh encoding. In: Proceedings of Eurographics Symposium on Geometry Processing (2003)Google Scholar
  26. 26.
    Khodakovsky, A., Schroder, P., Sweldens, W.: Progressive geometry compression. In: Proc. SIGGRAPH’00, pp. 271–278 (2000)Google Scholar
  27. 27.
    Gandoin, P.M., Devillers, O.: Progressive lossless compression of arbitrary simplicial complexes. ACM Trans. Graph. 21(3), 372–379 (2002)CrossRefGoogle Scholar
  28. 28.
    Valette, S., Prost, R.: Wavelet-based progressive compression scheme for triangle meshes: wavemesh. IEEE Trans. Visual. Comput. Graph. 10(2), 123–129 (2004)CrossRefGoogle Scholar
  29. 29.
    Isenburg, M., Alliez, P.: Compressing polygon mesh geometry with parallelogram prediction. In: IEEE Visualization Conference Proceedings, pp. 141–146 (2002)Google Scholar
  30. 30.
    Isenburg, M.: Compressing polygon mesh connectivity with degree duality prediction. In: Graphics Interface Conference Proc., pp. 161–170 (2002)Google Scholar
  31. 31.
    Khodakovsky, A., Alliez, P., Desbrun, M., Schroder, P.: Near- optimal connectivity encoding of 2-manifold polygon meshes. Graphical Models, special issue (2002)Google Scholar
  32. 32.
    Bajaj, C.L., Pascucci, V., Zhuang, G.: Single resolution compression of arbitrary triangular meshes with properties. Comput. Geom. Theor. Appl. 14, 167–186 (1999)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Kronrod, B., Gotsman, C.: Optimized compression of triangle mesh geometry using prediction trees. In: Proceedings of 1st International Symposium on 3D Data Processing, Visualization and Transmission, pp. 602–608 (2002)Google Scholar
  34. 34.
    Ahn, J.-H., Kim, C.-S., Ho, Y.-S.: Predictive compression of geometry, color and normal data of 3-D mesh models. IEEE Trans. Circuits Systems Video Technol 16(2), 291–299 (2006)CrossRefGoogle Scholar
  35. 35.
    Feng, Y.S., Nasrabadi, N.M.: Dynamic address-vector quantisation of RGB colour images. Commun. Speech Vis. 129(4), 225–231 (1991)CrossRefGoogle Scholar
  36. 36.
    Feng, Y.S., Nasrabadi, N.M.: Dynamic address-vector quantization algorithm based on inter-block and inter-color correlation for color image coding. Proc.—ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. 3, 1755–1758 (1989)Google Scholar
  37. 37.
    Zhu, C., Po, L.M.: Minimax partial distortion competitive learning for optimal codebook design. IEEE Trans. Image Process. 7(10), 1400–1409 (1998)CrossRefGoogle Scholar
  38. 38.
    Princeton University. 3D model search engine. http://shape.cs.princeton.eduGoogle Scholar
  39. 39.
    Ra, S.W., Kim, J.K.: Fast mean-distance-ordered partial codebook search algorithm for image vector quantization. IEEE. Trans. Circuits Systems-II. 40(9), 576–579 (1993)CrossRefGoogle Scholar
  40. 40.
    Bei, C.D., Gray, R.M.: An improvement of the minimum distortion encoding algorithm for vector quantization. IEEE Trans. Commun. COMM-33, 1132–1133 (1985)CrossRefGoogle Scholar
  41. 41.
    Aspert, N., Santa-Cruz, D., Ebrahimi, T.: MESH: Measuring error between surfaces using the Hausdorff distance. Proc. IEEE Int. Conf. Multimedia Expo 2002 (ICME) I, 705–708 (2002)CrossRefGoogle Scholar
  42. 42.
    Alliez, P., Desbrun, M.: Valence-driven connectivity encoding for 3D meshes. Comput. Graph. Forum. 20(3), 480–489 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  1. 1.Media Process. and Commun. Lab, School of Information Science and TechnologySun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Electronic and Information EngineeringHarbin Institute of Technology Shenzhen Graduate SchoolShenzhenPeople’s Republic of China

Personalised recommendations