Advertisement

Signal, Image and Video Processing

, Volume 2, Issue 3, pp 207–223 | Cite as

Detection threshold for non-parametric estimation

  • Abdourrahmane M. Atto
  • Dominique Pastor
  • Gregoire Mercier
Original Paper

Abstract

A new threshold is presented for better estimating a signal by sparse transform and soft thresholding. This threshold derives from a non-parametric statistical approach dedicated to the detection of a signal with unknown distribution and unknown probability of presence in independent and additive white Gaussian noise. This threshold is called the detection threshold and is particularly appropriate for selecting the few observations, provided by the sparse transform, whose amplitudes are sufficiently large to consider that they contain information about the signal. An upper bound for the risk of the soft thresholding estimation is computed when the detection threshold is used. For a wide class of signals, it is shown that, when the number of observations is large, this upper bound is from about twice to four times smaller than the standard upper bounds given for the universal and the minimax thresholds. Many real-world signals belong to this class, as illustrated by several experimental results.

Keywords

Non-parametric estimation Soft thresholding Sparse transform Wavelet transform Non-parametric detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz M. and Stegun I. (1972). Handbook of Mathematical Functions. Dover Publications Inc., New York zbMATHGoogle Scholar
  2. Berman, S.M.: Sojourns and Extremes Of Stochastic Processes. Wadsworth and Brooks/Cole (1992)Google Scholar
  3. Bruce, A.G., Gao, H.Y.: Understanding waveshrink: Variance and bias estimation. Research Report 36, StatSci (1996)Google Scholar
  4. Coifman, R.R., Donoho, D.L.: Translation invariant de-noising, pp. 125–150. Lecture Notes in Statistics, vol. 103 (1995)Google Scholar
  5. Donoho D.L. (1993). Unconditional bases are optimal bases for data compression and for statistical estimation. Appl. Comput. Harmon. Anal. 1(1): 100–115 zbMATHCrossRefMathSciNetGoogle Scholar
  6. Donoho D.L. (1995). De-noising by soft-thresholding. IEEE Trans Inform. Theory 41(3): 613–627 zbMATHCrossRefMathSciNetGoogle Scholar
  7. Donoho D.L. and Johnstone I.M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3): 425–455 zbMATHCrossRefMathSciNetGoogle Scholar
  8. Donoho D.L. and Johnstone I.M. (1996). Neo-classical minimax problems, thresholding and adaptive function estimation. Bernoulli 2(1): 39–62 zbMATHCrossRefMathSciNetGoogle Scholar
  9. Donoho D.L. and Johnstone I.M. (1999). Asymptotic minimaxity of wavelet estimators with sampled data. Statistica Sinica 9(1): 1–32 zbMATHMathSciNetGoogle Scholar
  10. Johnstone I.M. (1999). Wavelets and the theory of non-parametric function estimation. J. R. Statist. Soc. A 357: 2475–2493 zbMATHMathSciNetGoogle Scholar
  11. Krim H., Tucker D., Mallat S. and Donoho D.L. (1999). On denoising and best signal representation. IEEE Trans. Inform. Theory 45(7): 2225 zbMATHCrossRefMathSciNetGoogle Scholar
  12. Luisier F., Blu T. and Unser M. (2007). A new sure approach to image denoising: interscale orthonormal wavelet thresholding. IEEE Trans. Image Process. 16(3): 593–606 CrossRefMathSciNetGoogle Scholar
  13. Mallat S. (1999). A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, New York Google Scholar
  14. Pastor, D.: A theoretical result for processing signals that have unknown distributions and priors in white gaussian noise. To appear in Computational Statistics & Data Analysis, CSDA, http://dx.doi.org/10.1016/j.csda.2007.10.011
  15. Pastor, D., Amehraye, A.: Algorithms and applications for estimating the standard deviation of awgn when observations are not signal-free. J. Comput. 2(7) (2007)Google Scholar
  16. Pastor D., Gay R. and Gronenboom A. (2002). A sharp upper bound for the probability of error of likelihood ratio test for detecting signals in white gaussian noise. IEEE Trans. Inform. Theory 48(1): 228–238 zbMATHCrossRefMathSciNetGoogle Scholar
  17. Poor H.V. (1994). An Introduction to Signal Detection and Estimation, 2nd edn. Springer, New York Google Scholar
  18. Portilla J., Strela V., Wainwright M.J. and Simoncelli E.P. (2003). Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11): 1338–1351 CrossRefMathSciNetGoogle Scholar
  19. Serfling R.J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York zbMATHGoogle Scholar
  20. Wald A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 49(3): 426–482 CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2008

Authors and Affiliations

  • Abdourrahmane M. Atto
    • 1
  • Dominique Pastor
    • 1
  • Gregoire Mercier
    • 1
  1. 1.Institut TelecomTelecom Bretagne, CNRS UMR 2872 TAMCIC, CS 83818Brest Cedex 3France

Personalised recommendations