Advertisement

Signal, Image and Video Processing

, Volume 2, Issue 1, pp 9–37 | Cite as

Designs and architectures of filter bank trees for spectrally efficient multi-user communications: review, modifications and extensions of wavelet packet filter bank trees

  • M. SablatashEmail author
Original Paper

Abstract

A review is presented first of the evolution of transmultiplexers since about 1966, in the context of a long progression of theoretical advances and developments leading to recent proposals to fundamentally improve OFDM type systems using principles of perfect reconstruction filter (PRF) banks. The equivalence of transmultiplexers to OFDM type multi-user systems is discussed. The desirable goals for performance and implementation of transmultiplexers or multiband, multiuser communication systems that are addressed and met in this paper using filter bank trees are set down. Then modifications and extensions are presented of the designs and architectures of wavelet packet based synthesis and analysis pairs of filter bank trees (Sablatash and Lodge in Digital Signal Process 13: 58–92, 2003) that can be used as transmultiplexers. These exhibit a number of advantages over the previous designs and address three shortcomings of the designs used to illustrate basic principles in Sablatash and Lodge (Digital Signal Process 13:58–92, 2003). The first of these is the asymmetry of the magnitude frequency responses of the multiplexer channels, which is addressed using a symmetric design for a lowpass and highpass quadrature mirror filter (QMF) pair described herein. The second is the problem of minimizing the total delay of the signal in passing through the analysis and synthesis filter banks. This is addressed using an architecture involving DFT polyphase synthesis filter banks to replace the wideband VSB filters at the roots of the two identical synthesis filter bank trees, but results in the multiplexer having fewer levels. In this way a tradeoff is effected of lower delay and complexity with fewer levels of bandwidth on demand. At the receiver matching DFT polyphase analysis filters and the other matching analysis filters are implemented. The third shortcoming is the difficulty in designing a synchronization scheme if the filters in the synthesis and analysis filter banks have non-linear phase. This is addressed by designing linear phase filters that do not affect the ISI to any significant degree for communication purposes, although exact perfect reconstruction is lost, but greatly ease and improve the design of the synchronization scheme. Relationships of this paper and its advantages over recent research studies and IEEE 802.22 standards proposals using PR filter banks for multi-user systems to greatly improve on OFDM systems are discussed.

Keywords

Filter bank trees Multi-user OFDM-type communication systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sablatash M. and Lodge J. (2003). Spectrally efficient multiplexing of O-QPSK or VSB signals using wavelet packet-based filter banks. Digital Signal Process. 13(1): 58–92 CrossRefGoogle Scholar
  2. 2.
    Chang R.W. (1966). High-speed multichannel data transmission with bandlimited orthogonal signals. Bell Sys. Tech. J. XLV(10): 1775–1796 Google Scholar
  3. 3.
    Saltzberg B.R. (1967). Performance of an efficient parallel data transmission system. IEEE Trans. Commun. Technol. COM-15(6): 805–811 CrossRefGoogle Scholar
  4. 4.
    Weaver D.K. Jr. (1956). A third method of generation and detection of single-sideband signals. Proc. IRE 44(12): 1703–1705 CrossRefGoogle Scholar
  5. 5.
    Darlington, S.: Some circuits for single-sideband modulation, Proceedings of the 3rd annual princeton conference on information sciences and systems, Princeton University, Princeton, (1969)Google Scholar
  6. 6.
    Darlington S. (1970). On digital single-sideband modulators. IEEE Trans. Circuit Theory CT-17(3): 409–414 Google Scholar
  7. 7.
    Kurth C.F. (1971). SSB /FDM utilizing TDM digital filters. IEEE Trans. Commun. Technol. COM-19(1): 63–71 CrossRefGoogle Scholar
  8. 8.
    Freeny S.L., Kieburtz R.B., Mina K.V. and Tewksbury S.K. (1971). Design of digital filters for an all digital frequency division multiplex-time division multiplex translator. IEEE Trans. Circuit Theory CT-18(6): 702–711 CrossRefGoogle Scholar
  9. 9.
    Freeny S.L., Kieburtz R.B., Mina K.V. and Tewksbury S.K. (1971). Systems analysis of a TDM-FDM translator/digital A-type channel bank. IEEE Trans. Commun. Technol. COM-19(6 Pt. 1): 1050–1059 CrossRefGoogle Scholar
  10. 10.
    Singh S., Renner K. and Gupta S.C. (1973). Digital single-sideband modulation. IEEE Trans. Commun. COM-21(3): 255–262 CrossRefGoogle Scholar
  11. 11.
    Bellanger M.G. and Daguet J.L. (1974). TDM-FDM transmultiplexer: digital polyphase and FFT. IEEE Trans. Commun. COM-22(9): 1199–1205 CrossRefGoogle Scholar
  12. 12.
    Terrell P.M. and Rayner P.J.W. (1975). A digital block processor for SSB-FDM modulation and demodulation. IEEE Trans. Commun. COM-23(2): 282–286 CrossRefGoogle Scholar
  13. 13.
    Kieburtz R.B. (1978). Introduction to papers on TDM/FDM transmultiplexers. IEEE Trans. Commun. COM-26(5): 697–698 CrossRefGoogle Scholar
  14. 14.
    Takahata F., Hirata Y., Ogawa A. and Inagaki K. (1978). Development of a TDM/FDM transmultiplexer. IEEE Trans. Commun. COM-26(5): 726–733 CrossRefGoogle Scholar
  15. 15.
    Maruta R. and Tomozawa A. (1978). An improved method for digital SSB-FDM modulation and demodulation. IEEE Trans. Commun. COM-26(5): 720–725 CrossRefGoogle Scholar
  16. 16.
    Bonnerot G., Coudreuse M. and Bellanger M. (1978). Digital processing techniques in the 60 channel transmultiplexer. IEEE Trans. Commun. COM-26(5): 698–706 CrossRefGoogle Scholar
  17. 17.
    Tsuda T., Morita S. and Fujii Y. (1978). Digital TDM-FDM translator with multistage structure. IEEE Trans. Commun. COM-26(5): 734–741 CrossRefGoogle Scholar
  18. 18.
    Peled A. and Winograd S. (1978). TDM-FDM conversion requiring reduced computation complexity. IEEE Trans. Commun. COM-26(5): 707–719 CrossRefGoogle Scholar
  19. 19.
    Scheuermann H. and Göckler H. (1981). A comprehensive survey of digital transmultiplexing methods. Proc. IEEE 69(11): 1419–1450 CrossRefGoogle Scholar
  20. 20.
    Takahata, F., Inagaki, K., Ogawa, A.: Design of digital signal processor in a TDM/FDM transmultiplexer. Proceedings of the IEEE International Conference on Communication (ICC ’80), vol. 1, Seattle, June 8–12, 1980, pp. 47.2.1–47.2.6Google Scholar
  21. 21.
    Aoyama T., Mano F., Wakabayashi K., Maruta R. and Tomozawa A. (1980). 120-channel transmultiplexer design and performance. IEEE Trans. Commun. COM-28(9): 1709–1717 CrossRefGoogle Scholar
  22. 22.
    Aoyama T., Mano F. and Wakabayashi K. (1980). An experimental TDM-FDM transmultiplexer using CMOS LSI circuits. Rev. Elec. Commun. Lab. (Tokyo) 28(1–2): 1–27 Google Scholar
  23. 23.
    Classen T.A.C.M. and Mecklenbräuker W.F.G. (1978). A generalized scheme for an all-digital time-division multiplex to frequency-division multiplex translator. IEEE Trans. Circuits Systems CAS-25(5): 252–259 CrossRefGoogle Scholar
  24. 24.
    Kurth, C.F., Bures, K.J., Gagnon, P.R. (1981) Per-channel, memory-oriented transmultiplexer with logarithmic processing—architecture and simulation. Proceedings of the IEEE International Conference on Communication (ICC ’81), vol. 1, Denver, CO, June 14–18,, pp. 7.3.1–7.3.5Google Scholar
  25. 25.
    Kurth, C.F., Gagnon, P.R., Bures, K.J.: Per-channel, memory-oriented transmultiplexer with logarithmic processing—lab model implementation and testing. Proceedings of the IEEE International Conference on Communication (ICC ’81), Vol. 1, Denver, CO, June 14–15, 1981, pp. 7.4.1–7.4.4Google Scholar
  26. 26.
    Del Re, E.: A new approach to transmultiplexer implementation. Proceedings of the IEEE International Conferences on Communication, (ICC ‘81), vol. 1, Denver, CO, June 14–15, 1981, pp. 18.4.1–18.4.4Google Scholar
  27. 27.
    Daguet J.L., Bellanger M. and Bonnerot G. (1975). Méthode Simplifiée de Multiplexage en Fréquence de Signaux Numériques Réels. Câbles et Transmission 29(3): 259–265 Google Scholar
  28. 28.
    Roche B., LeCorre Y.-L., Bonnerot G., Coudreuse M. and Sourgens J. (1977). Transmultiplexeur numériques à 60 Voies. Câbles et Transmission 31(4): 444–463 Google Scholar
  29. 29.
    Drageset, O., Foss, O.: The transmultiplexer—a new type of equipment for conversion between PCM and FDM systems. Part IV—Implementation, Telektronikk, (1), 19–24 (1978)Google Scholar
  30. 30.
    Røste T., Hasberg O. and Ramstad T.A. (1979). A radix-4 FFT processor for application in a 60-channel transmultiplexer using TTL technology. IEEE Trans. Acoust., Speech, Signal Process. ASSP-27(6): 746–751 CrossRefGoogle Scholar
  31. 31.
    Polloni, D.P.C.: Dimensionierung von Digitalen TDM-FDM—Transmultiplexern nach der Polyphasenmethode, Ph.D. Dissertation, ETH Zürich, Switzerland, No. 6283, (1979)Google Scholar
  32. 32.
    Tomlinson M. and Wong K.M. (1976). Techniques for the digital interfacing of T.D.M.-F.D.M. systems. Proc Inst. Elec. Eng. 123(6): 1285–1292 Google Scholar
  33. 33.
    Narasimha, M.J., Peterson, A.M.: Design of a 24-channel transmultiplexer. IEEE Trans. Acoust. Speech Signal Process. Vol. ASSP-27, Part II, No. 6, 1979, pp. 752–762Google Scholar
  34. 34.
    Marshall, T.G.: A multiple VLSI signal processor realization of a transmultiplexer. Proceedings of the IEEE International Conference on Communication (ICC’81), vol. 1, Denver, CO, June 14–18, 1981, pp. 7.7.1–7.7.5Google Scholar
  35. 35.
    Kao, C.Y.: An exploratory TDM-FDM SSB generator. Proceedings National Electronics Conference vol. 27, Chicago, IL, October 1972, pp. 47–51Google Scholar
  36. 36.
    Lagadec, R.: Digital channel translation based on quadrature processing, Ph.D. dissertation, ETH Zürich, Switzerland, No. 5470, (1975)Google Scholar
  37. 37.
    Tsuda T., Morita S. and Fujii Y. (1979). Realization of a TDM-FDM transmultiplexer with multistage structure using ROM multipliers. Fujitsu Sci. Tech. J. 15(1): 17–37 Google Scholar
  38. 38.
    Bellanger M.G., Daguet J.L. and Lepagnol G.P. (1974). Interpolation, extrapolation and reduction of computation speed in digital filters. IEEE Trans. Acoust. Speech Signal Process. ASSP-22(4): 231–235 CrossRefGoogle Scholar
  39. 39.
    Constantinides, A.G., Valenzuela, R.A.: A new modular low complexity transmultiplexer design. Proceedings of the IEEE International Conference on Communicaton (ICC ‘81), vol. 1, Denver, CO, June 14–18, 1981, pp. 18.8.1–18.8.5Google Scholar
  40. 40.
    Fettweis A. (1978). Principles for multiplier-free single-way PCM/FDM and audio/FDM conversion. Archiv. Elektr. Übertragungstechnik AEÜ-32(11): 441–446 Google Scholar
  41. 41.
    Fettweis A. (1978). Multiplier-free modulation schemes for PCM/FDM and audio/FDM conversion. Archiv. Elektr. Übertragungstechnik AEÜ-32(12): 447–485 MathSciNetGoogle Scholar
  42. 42.
    Fettweis A. (1971). Digital filter structures related to classical filter networks. Archiv. Elektr. Übertragungstechnik AEÜ-25(2): 79–89 MathSciNetGoogle Scholar
  43. 43.
    Gazai, L.: Simulation and testing of transmultiplexers using wave digital filters. Proceedings of the IEEE International Conference on Communication (ICC’81), vol. 1, Denver, CO, pp. 18.6.1–18.6.5 (1981)Google Scholar
  44. 44.
    Fettweis, A.: Concepts for efficient design of transmultiplexers with robust performance. Proceedings of the IEEE International Conference On Communication (ICC’81), vol. 1, Denver, CO, pp.18.5.1–18.5.5 (1981)Google Scholar
  45. 45.
    Molo, F.: Transmultiplexer realization with multistage filtering. Proceedings of the IEEE International Conference on Communication (ICC’81), vol.1, Denver, CO, pp. 18.7.1–18.7.5 (1981)Google Scholar
  46. 46.
    IEEE Trans. Commun. Special Issue on Transmultiplexers, Vol. COM-30, No. 7, pp. 1457–1655 (1982)Google Scholar
  47. 47.
    Bellanger M.G. (1982). On computational complexity in digital transmultiplexer filters. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1461–1465 CrossRefGoogle Scholar
  48. 48.
    Røste T. (1982). The impact of some CCITT recommendations on transmultiplexer design. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1483–1492 CrossRefGoogle Scholar
  49. 49.
    Narasimha M.J. (1982). Design of FIR filter banks for a 24-channel transmultiplexer. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1506–1510 CrossRefGoogle Scholar
  50. 50.
    Takahata F., Inagaki K., Hirata Y. and Ogawa A. (1982). A digital 60-channel transmultiplexer: algorithm minimizing multiplications rate and hardware implementation. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1511–1519 CrossRefGoogle Scholar
  51. 51.
    Kurth C.F., Bures K.J., Gagnon P.R. and Etzel M.H. (1982). A per-channel memory-oriented transmultiplexer with logarithmic processing. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1520–1527 CrossRefGoogle Scholar
  52. 52.
    Maruta R., Kanemasa A., Sakaguchi H., Hibino M. and Nakayama K. (1982). 24- and 120-channel transmultiplexers built with new digital signal processing LSI’s. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1528–1539 CrossRefGoogle Scholar
  53. 53.
    Rossiter T.J.M., Chitsaz S., Gingell M.J. and Humphrey L.D. (1982). A modular transmultiplexer system using custom LSI devices. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1540–1551 CrossRefGoogle Scholar
  54. 54.
    Maruta, R., Kanemasa, A., Sakaguchji, H., Hibino, M., Kawayachi, N.: A 24-channel transmultiplexer. Proceedings of the IEEE International Conference on Communication (ICC’81), vol. 1, Denver, CO, June 14–18 pp. 7.5.1–7.5.5 (1981)Google Scholar
  55. 55.
    Wakabayashi K., Aoyama T., Murano K. and Amano F. (1982). TDM-FDM transmultiplexer using a digital signal processor. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1552–1559 CrossRefGoogle Scholar
  56. 56.
    Marshall T.G. (1982). A multiple VLSI signal processor realization of a transmultiplexer. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1560–1568 CrossRefGoogle Scholar
  57. 57.
    Bellanger M.G., Bonnerot G. and Coudreuse M. (1976). Digital filtering by polyphase network: application to sample-rate alteration and filter banks. IEEE Trans. Acoust. Speech Signal Process. ASSP-24(2): 109–114 CrossRefGoogle Scholar
  58. 58.
    Freeny, S.L.: An introduction to the use of digital signal processing for TDM/FDM conversion. Proceedings of the IEEE International Conference on Communication (ICC’78), vol III, Toronto, ON, Canada, pp. 39.1.1–39.1.7 (1978)Google Scholar
  59. 59.
    Freeny S.L. (1980). TDM/FDM translation as an application of digital signal processing. IEEE Commun. Mag. 18(1): 5–15 CrossRefGoogle Scholar
  60. 60.
    Narasimha, M.J., Peterson, M.J.: Design and applications of uniform digital bandpass filter banks. Proceedings of the IEEE International Conference Acoustie Speech Signal Processing (ICASSP ’78), Tulsa, OK, 10–12, 1978, pp. 499–503Google Scholar
  61. 61.
    Ansari R. and Liu B. (1982). Transmultiplexer design using all-pass filters. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1569–1574 CrossRefGoogle Scholar
  62. 62.
    Fettweis A. (1982). Transmultiplexers with either analog conversion circuits, wave digital filters, or SC filters—a Review. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1575–1586 CrossRefGoogle Scholar
  63. 63.
    Gazsi L. (1982). DSP-based implementation of a transmultiplexer using wave digital filters. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1587–1597 CrossRefGoogle Scholar
  64. 64.
    Göckler H. and Scheuermann H. (1982). A modular approach to a digital 60-channel transmultiplexer using directional filters. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1598–1613 CrossRefGoogle Scholar
  65. 65.
    Molo F. (1982). Transmultiplexer realization with multistage filtering. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1614–1622 CrossRefGoogle Scholar
  66. 66.
    Del Re E. and Emiliani P.L. (1982). An analytic signal approach for transmultiplexers: theory and design. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1623–1628 CrossRefGoogle Scholar
  67. 67.
    Constantinides A.G. and Valenzuela R.A. (1982). An efficient and modular transmultiplexer design. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1629–1641 CrossRefGoogle Scholar
  68. 68.
    Cariolaro G.L., Cucchi S. and Molo F. (1982). Transmultiplexer via spread-spectrum modulation. IEEE Trans. Commun. (Special Issue on Transmultiplexers) COM-30(7): 1642–1655 CrossRefGoogle Scholar
  69. 69.
    Hirosaki B. (1980). An analysis of automatic equalizers for orthogonally multiplexed QAM systems. IEEE Trans Commun. COM-28(1): 73–83 CrossRefGoogle Scholar
  70. 70.
    Hirosaki B. (1981). An orthogonally multiplexed QAM system using the discrete fourier transform. IEEE Trans Commun. COM-29(7): 982–989 CrossRefGoogle Scholar
  71. 71.
    Hirosaki B., Hasegawa S. and Sabato A. (1986). Advanced groupband data modem using orthogonally multiplexed QAM technique. IEEE Trans. Commun. COM-34(6): 587–592 CrossRefGoogle Scholar
  72. 72.
    Sablatash, M., Lodge, J.H., McGee, W.F.: Equivalence between vestigial sideband (VSB) and offset quadrature phase shift (OQPSK) modulations and relationships to wavelet packet-based multiplexing. Proceedings of the 18th Biennial Symposium on Communication, Queen’s University, Kingston, June 2–5, 1996, pp. 339–342Google Scholar
  73. 73.
    Vetterli, M.: Analysis, synthesis and computational complexity of digital filter banks. Ph.D. Dissertation, Ecole Polytechnique Fédérale de Lausanne, Switzerland, No. 617, (1986)Google Scholar
  74. 74.
    Vetterli, M.: Perfect transmultiplexers. Proceedings of the IEEE International Conference Acoustics, Speech Signal Processing (ICASSP’86), vol. 4, Tokyo, Japan, April 7–11, 1986, pp. 48.9.1–48.9.4Google Scholar
  75. 75.
    Vetterli M. (1986). Filter banks allowing perfect reconstruction. Signal Process. 10(3): 219–244 CrossRefMathSciNetGoogle Scholar
  76. 76.
    Vetterli M. (1987). A theory of multirate filter banks. IEEE Trans. Acoust. Speech Signal Process. ASSP-35(3): 356–372 CrossRefGoogle Scholar
  77. 77.
    Koilpillai R.D., Nguyen T.Q. and Vaidyanathan P.P. (1991). Some results in the theory of cross-talk free transmultiplexers. IEEE Trans. Signal Process. 39(1): 2174–2183 CrossRefGoogle Scholar
  78. 78.
    Ramachandran R.P. and Kabal P. (1992). Bandwidth efficient transmultiplexers, Part 1: synthesis. IEEE Trans. Signal Process. 40(1): 70–84 CrossRefGoogle Scholar
  79. 79.
    Ramachandran R.P. and Kabal P. (1992). Bandwidth efficient transmultiplexers, Part 2: subband complements and performance aspects. IEEE Trans. Signal Process. 40(5): 1108–1121 zbMATHCrossRefGoogle Scholar
  80. 80.
    Nussbaumer, H.J., Vetterli, M.: Computationally efficient QMF filter banks. Proceedings of the IEEE International Conference Acoustics, Speech, Signal Process. (ICASSP’84), Vol. I, San Diego, CA, March 19–21, pp. 11.3.1–11.3.4, (1984)Google Scholar
  81. 81.
    Akansu A.N., Duhamel P., Lin X. and Courville M. (1998). Orthogonal transmultiplexers in communication: a review. IEEE Trans. Signal Process. 46(4): 979–995 CrossRefGoogle Scholar
  82. 82.
    Sandberg S.D. and Tzannes M.A. (1995). Overlapped discrete multitone modulation for high speed copper wire communications. IEEE J. Selected Areas Commun. 13(9): 1571–1585 CrossRefGoogle Scholar
  83. 83.
    Sablatash, M., Lodge, J.H., McGee, W.F.: The design of filter banks with specified minimum stopband attenuation for wavelet packet-based multiple access communications. Proceedings of the 18th Biennial Symposium on Communication, Queen’s University, Kingston, pp. 53–56, (1996)Google Scholar
  84. 84.
    Mathieu, S., Fortier, P., Roy, S., Huynh, H.T.: Discrete wavelet modulation for wireless channels. Proceedings of the 21st Biennial Symposium on Communication, Queen’s University, Kingston, pp. 120–123, (2002)Google Scholar
  85. 85.
    Wu, J.: The wavelet packet division multiplexing system– theory, design and performance analyses, Ph.D. thesis, McMaster University, Hamilton, (1998)Google Scholar
  86. 86.
    Wickerhauser, M.V.: Adapted wavelet analysis from theory to software, A.K. Peters, Wellesley, Ch. 7, pp.237–271, (1994)Google Scholar
  87. 87.
    Fliege, N.J.: Multirate digital signal processing: multirate systems, filter banks, wavelets, wiley, Toronto, (1994)Google Scholar
  88. 88.
    Sablatash, M., McGee, W.F., Lodge, J.H.: Bandwidth-on-demand multiple access communications system design combining wavelet packet trees and DFT polyphase filter banks. Proceedings of the NJIT’97, A One-Day Symposium on Wavelet, Subband and Block Transforms in Communications, New Jersey Institute of Technology, Department of Electrical and Computer Engineering, Center for Communication and Signal Processing Research & New Jersey Center for Multimedia Research, Newark, 21 March, 13 pp, (1997)Google Scholar
  89. 89.
    Sablatash, M., Lodge, J.: Bandwidth-on-demand multiple access communications using wavelet packet-based and DFT polyphase filter banks. In: Kschischang, F.R., Khandani, A.K. (eds.) Proceedings of the 1997 Workshop on Inform. Theory, The Fields Institute for Research in the Mathematical Sciences, University of Toronto, Toronto, pp. 65–68, (1997)Google Scholar
  90. 90.
    Sablatash, M., McGee, W.F., Lodge, J.: Designs of prototype filters for calculation of polyphase components of DFT filter banks and simulation studies to evaluate the bit error rate performance of a multiplexer-demultiplexer filter bankTransmitter-receiver for downstream transmission with phase and timing errors at the receiver. In: Proceedings of the Wireless ’97, The 9th International Conference on Wireless Communication, vol. 1, Calgary, Alberta, pp. 222–241, (1997)Google Scholar
  91. 91.
    Sablatash, M., Lodge, J.: Theory and design of spectrum-efficient bandwidth-on-demand multiplexer demultiplexer pairs based on wavelet packet tree and polyphase filter banks. Proceedings of the 1998 International Conference on Acoustics, Speech Signal Processing (ICASSP’98), vol. 3, Seattle, pp. 1797–1800, (1998)Google Scholar
  92. 92.
    Sablatash, M., McGee, W.F., Lodge, J.: Spectrum-efficient bandwidth-on-demand multi-user transmission based on concatenation of filter bank trees and polyphase filters. Proceedings of the of the 19th Biennial Symposium on Communication, Queen’s University, Kingston, pp. 382–385, (1998)Google Scholar
  93. 93.
    Sablatash, M., Lodge, J.: Theory and design of an advanced multi-user bandwidth-on-demand mobile communication system using tree-structured and polyphase filter banks. Proceedings of the IMSC’99, The 6th International Mobile Satellite Conference, Ottawa, pp. 120–127, (1999)Google Scholar
  94. 94.
    Vetterli, M., Kovacevic, J.: Wavelets and subband coding, Prentice Hall, Englewood Cliffs, Ch. 3, pp. 133–135, (1995)Google Scholar
  95. 95.
    Sablatash, M., Lodge, J.: Advantages of using linear phase filters in a multi-user communication system based on filter bank trees. Proceedings of the 20th Biennial Symposium on Communication, Queen’s University, Kingston, May 28–31, pp. 47–51, (2000)Google Scholar
  96. 96.
    Sablatash, M., Lodge, J.: Design of a synchronization scheme for a bandwidth-on-demand multiplexer-demultiplexer pair based on wavelet packet tree filter banks. Proceedings of the 1999 International Conference on Acoustics, Speech, Signal Processing, (ICASSP’99), vol.4, Phoenix, pp. 2211–2214, (1999)Google Scholar
  97. 97.
    Sablatash, M., Lodge, J.: Wavelet packet based bandwidth-on-demand multi-user communication system: receiver simplification and synchronization scheme. Proceedings of the Wireless’99, The 11th International Conference on Wireless Communication, vol. 2, Calgary, July 12–14, pp. 366–383, (1999)Google Scholar
  98. 98.
    McGee, W.F., Sablatash, M., Lodge, J.: Pilot symbol synchronization for bandwidth-on-demand filter-tree communication systems. Proceedings of the 4th European Workshop on Mobile/ Personal Satellite Communication (EMPS 2000), London, September 18–21 pp. 44–52, (2000)Google Scholar
  99. 99.
    Zarowski, C.J.: Notes on orthogonal wavelets and wavelet packets. Report 1–95, Department of Electrical and Computer Engineering, Queen’s University, Kingston, (1995)Google Scholar
  100. 100.
    Learned, R.E., Krim, H., Claus, B., Willsky, A.S., Karl, W.C.: Wavelet-packet-based multiple access communication. Proceedings of the SPIE International Symposium on Optics, imaging and instrumentation-mathematical imaging wavelet applications in signal and image Processing, vol. 2303, San Diego, July 27–29 pp. 246–259, (1994)Google Scholar
  101. 101.
    Lindsey, A.R.: Generalized orthogonally multiplexed communication via wavelet packet basis, Ph.D. dissertation, Faculty of the Russ College of Engineering and Technology, Ohio University, Ohio (1995)Google Scholar
  102. 102.
    Lindsey A.R. (1997). Wavelet packet modulation for orthogonally multiplexed communications. IEEE Trans. Signal Process. 45(5): 1336–1339 CrossRefGoogle Scholar
  103. 103.
    Wu, J., Wong, K.M., Jin, Q.: Multiplexing based on wavelet packets. Proceedings of the SPIE International Symposium on AEROSENSE, Vol. 2491, Part I, Orlando, pp. 315–326, (1995)Google Scholar
  104. 104.
    Wong K.M., Wu J., Davidson T.N. and Jin Q. (1997). Wavelet packet division multiplexing and wavelet packet design under timing error effects. IEEE Transaction Signal Processing 45(12): 2877–2890 CrossRefGoogle Scholar
  105. 105.
    Sablatash, M., Lodge, J.H., Zarowski, C.J.: Theory and design of communication systems based on scaling functions, wavelets, wavelet packets and filter banks. Proceedings of the Wireless’96, The 8th International Conference on Wireless Communication, vol. 2, Calgary, pp. 640–659, (1996)Google Scholar
  106. 106.
    Lawton W. (1993). Applications of complex-valued wavelet transforms to subband decomposition. IEEE Trans. Signal Process. 41(12): 3566–3569 zbMATHCrossRefGoogle Scholar
  107. 107.
    Sablatash, M., McGee, W.F., Lodge, J.: The performance of a spectrum-efficient multicarrier transmission system with phase and timing offsets. Proceedings of the Wireless’98, The 10th International Conference on Wireless Communication, vol. 1, Calgary, pp. 418–434, (1998)Google Scholar
  108. 108.
    Zarowski, C.J.: Notes on orthogonal wavelets and wavelet packets, Report (2nd edition), Department of Electrical and Computer Engineering, Queen’s University, Kingston, (1996)Google Scholar
  109. 109.
    Sablatash, M., Cooklev, T., Lodge, J.: Design and implementation of wavelet packet-based filter bank trees for multiple access communications. Proceedings of the IEEE International Conference on Communication (ICC’97), vol. 1, Montreal, pp. 176–180, (1997)Google Scholar
  110. 110.
    Sablatash, M., Lodge, J.: Turbo-coded and synchronized spectrum-efficient bandwidth-on-demand multi-user transmission system based on filter trees. Proceedings of the of the 20th Biennial Symposium on Communication, Queen’s University, Kingston, pp. 18–22, (2000)Google Scholar
  111. 111.
    Sablatash, M., Lodge, J.: Performance of turbo-coded and synchronized spectrum-efficient bandwidth-on demand multi-user out-bound transmission system based on trees of linear phase filters with almost perfect reconstruction. Proceedings of the Wireless 2000, The 12th International Conference on Wireless Communication, vol 1, Calgary, pp. 351–369, (2000)Google Scholar
  112. 112.
    LaSalle, R., Alard, M.: Principles of modulation and channel coding for digital broadcasting for mobile receivers. EBU Review-Tech. No. 224, pp. 168–190, (1987)Google Scholar
  113. 113.
    Daubechies, I.: Ten lectures on wavelets, CBMS-NSF regional conference series in applied mathematics No. 61, Society for Industrial and Applied Mathematics, Philadelphia, (1992)Google Scholar
  114. 114.
    Coifman, R.R., Wickerhauser, M.V.: Entropy-based algorithms for best basis selection. IEEE Trans. Inform Theory, Vol. IT-38, No. 2, Part II, pp. 713–718, (1992)Google Scholar
  115. 115.
    Siclet, C., Siohan, P.: Design of BFDM/OQAM systems based on biorthogonal modulated filter banks. Proceedings of the IEEE Globecom 2000, vol. 2, San Francisco, CA, November 27-December 1, pp. 701–705, (2000)Google Scholar
  116. 116.
    Siohan P., Siclet C. and Lacaille N. (2002). Analysis and design of OFDM/OQAM systems based on filter bank theory. IEEE Trans. Signal Process. 50(5): 1170–1183 CrossRefGoogle Scholar
  117. 117.
    Viholainen, A., Ihalainen, T., Renfors, M.: Performance of time-frequency localized and frequency selective filter banks in multicarrier systems. Proceedings of the 2006 IEEE International Symposium on Circuits and Systems (ISCAS 2006), Island of Kos, Greece, May 21–24, on CD-ROM, (2006)Google Scholar
  118. 118.
    Bölcskei H., Duhamel P. and Hleiss R. (2003). Orthogonalization of OFDM/OQAM pulse shaping filters using the zak transform. Signal Process. 83(7): 1379–1391 CrossRefzbMATHGoogle Scholar
  119. 119.
    A cognitive PHY/MAC proposal for IEEE 802.22 WRAN systems, Nov. 7, 2005Google Scholar
  120. 120.
    A cognitive PHY/MAC proposal for IEEE 802.22 WRAN systems, Part 1: The cognitive PHY, Nov. 7, 2005Google Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  1. 1.Communications Research CenterOttawaCanada

Personalised recommendations