Signal, Image and Video Processing

, Volume 1, Issue 4, pp 369–384 | Cite as

A unified balanced approach to multichannel blind deconvolution

Original paper


In this paper, we explore the application of a common operator used in systems theory, viz., the delta operator, to formulate a unified theory of multichannel blind deconvolution (MBD) which is valid in both discrete and continuous time domains. Apart from providing a unified treatment of MBD problems, this formulation permits a smooth transition of the demixer from a discrete time domain to a continuous time domain when the sampling rate is high. Furthermore we give a unified treatment of a balanced parameterized state space formulation to solving the MBD problem in both discrete and continuous time domains when the number of states is unknown.


Multichannel blind deconvolution Independent component analysis State space Delta operator Balanced parametrization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cichocki A. and Amari S. (2002). Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Wiley, West Sussex Google Scholar
  2. 2.
    Haykin S. (1994). Blind Deconvolution. Prentice-Hall, New Jersey Google Scholar
  3. 3.
    Lambert, R.H.: Multichannel blind deconvolution: FIR matrix algebra and separation of multipath mixtures. PhD Thesis, University of Southern California (1996)Google Scholar
  4. 4.
    Attias H. and Schreiner C.E. (1998). Blind source separation and deconvolution: the dynamic component analysis algorithm. Neural Comput. 10(6): 1373–1424 CrossRefGoogle Scholar
  5. 5.
    Valpola H. and Karhunen J. (2002). An unsupervised ensemble learning method for nonlinear dynamic state-space models. Neural Comput. 14(11): 2647–2692 MATHCrossRefGoogle Scholar
  6. 6.
    Zhang, L., Amari, S., Cichocki, A.: Natural gradient approach to blind separation of over- and under-complete mixtures. In: Proceeding of the 1st International Workshop on Independent Component Analysis and Signal Separation, pp. 455–460 (1999)Google Scholar
  7. 7.
    Zhang L. and Cichocki A. (2000). Blind deconvolution of dynamical systems: a state space approach. J. Signal Proces. 4(2): 111–130 Google Scholar
  8. 8.
    Xia, B., Zhang, L.: Multichannel blind deconvolution of non- minimum phase system using cascade structure. In: The 11th International Conference on Neural Information Processing, ICONIP, pp. 1186–1191 (2004)Google Scholar
  9. 9.
    Taylor, R.M. Jr, Mili, L., Zaghloul, A.I.: MOptimal multichannel blind deconvolution for parameterized channels and known source densities. Technical Report, Alexandria Research Institute of Virginia Tech (2005)Google Scholar
  10. 10.
    Salam, F.M., Erten, G., Waheed, K.: Blind source recovery: algorithms for static and dynamic environments. In: NNS-IEEE International Joint Conference on Neural Networks, IJCNN (2001)Google Scholar
  11. 11.
    Erten G. and Salam F. (1998). Voice extraction by on-line signal separation and recovery. IEEE Trans. on Circuits Systems II: Analog Digital Signal Proces. 46(7): 915–922 CrossRefGoogle Scholar
  12. 12.
    Amari, S., Douglas, S., Cichocki, A., Yang, H.H.: Multichannel blind deconvolution and equalization using the natural gradient. In: Proceedings of IEEE International Workshop on Wireless Communication, pp. 101–104 (1997)Google Scholar
  13. 13.
    Torkkola, K.: Blind deconvolution, information maximization, and recursive filters. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 21–24 (1997)Google Scholar
  14. 14.
    Goodwin G.C., Middleton R.H. and Poor H.C. (1992). High-speed digital signal processing and control. Proc. IEEE 80(2): 240–259 CrossRefGoogle Scholar
  15. 15.
    Middleton, R.H., Goodwin, G.C.: Digital Control and Estimation: A Unified Aprroach. Prentice Hall, Englewood Cliffs (1990)Google Scholar
  16. 16.
    Amari S. (1998). Natural gradient working efficiently in learning. Neural Comput. 10(2): 251–276 CrossRefMathSciNetGoogle Scholar
  17. 17.
    Tsoi, A.C., Ma, L.S.: Blind deconvolution of dynamical system using a balanced parameterised state space approach. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP, vol. 4, pp. 309–312 (2003)Google Scholar
  18. 18.
    Glover K. (1984). All optimal hankel norm approximations of linear multivariable systems and L error bounds. International J. Control 39: 1115–1193 MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Chou C.T. and Maciejowski J.M. (1997). System Identification using balanced parametrizations. IEEE Trans. Autom. Control 42(7): 956–974 MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Nandi A.K. (1999). Blind Estimation Using Higher-Order Statistics. Kluwer, Dordrecht Google Scholar
  21. 21.
    Waheed, K., Salam, F.M.: A data-derived quadratic independence measure for adaptive blind source recovery in practical applications. In: 45th IEEE International Midwest Symposium on Circuits and Systems, vol. 3, pp. 473–476 (2002)Google Scholar
  22. 22.
    Choudrey R.A.: Variational methods for Bayesian independent component analysis. PhD Thesis, University of Oxford (2002)Google Scholar
  23. 23.
    Moddemeijer R. (1989). On estimation of entropy and mutual information of continuous distributions. Signal Proces. 16(3): 233–246 CrossRefMathSciNetGoogle Scholar
  24. 24.
    Strehl, A.: Relationship-based clustering and cluster ensembles for high-dimensional Data Mining. PhD Thesis, The University of Texas at Austin (2002)Google Scholar
  25. 25.
    Newman M.J. and Holmes D.G. (2003). Delta operator digital filters for high performance inverter applocations. IEEE Trans. Power Electron. 18: 447–454 CrossRefGoogle Scholar
  26. 26.
    Agoston A., Pepper S., Norton R., Ebner J. and Schoen K. (2003). 100GHz through-line sampler system with sampling rates in excess of 10 Gsamples/second. IEEE MTT-S Int. Microwave Symp. Digest 3: 519–1521 Google Scholar
  27. 27.
    Moody, J., Wu, L.: Statistical analysis of tick-by-tick foreign exchange data. In: Proceedings of the High Frequency Data in Finance Conference, Zurich (1995)Google Scholar
  28. 28.
    Breton, D., Deslagnes, E.: Very high dynamic range and high-sampling rate VME digitizing board for physics experiments. In: Proceedings 10TH Workshop on Electronics for LHC Experiments and Future Experiments, Boston (2004)Google Scholar
  29. 29.
    Lee T.W. (1998). Independent Component Analysis: Theory and Applications. Kluwer, Dordrecht MATHGoogle Scholar
  30. 30.
    Zhang L., Cichocki A. and Amari S. (1999). Natural gradient algorithm for blind separation of overdetermined mixture with additive noise. IEEE Signal Process. Lett. 6(11): 293–295 CrossRefGoogle Scholar
  31. 31.
    MacKay D.J.C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge MATHGoogle Scholar
  32. 32.
    Choudrey, R.A., Roberts, S.J.: Flexible Bayesian independent component analysis for blind source separation. In: International Workshop on Independent Component Analysis and Blind Signal Separation (2001)Google Scholar
  33. 33.
    Akaike, H.: Information theory and an extension of maximum likelihood principle. In: Proceedings of the Second International Symposium on Information Theory (1973)Google Scholar
  34. 34.
    Raftery A.E. (1986). Choosing models for cross-classifications. Am. Sociol. Rev. 51: 145–146 CrossRefGoogle Scholar
  35. 35.
    Rissanen J. (1978). Modeling by shortest data description. Automatica 14: 465–471 MATHCrossRefGoogle Scholar
  36. 36.
    Rissanen J. (1982). Estimation of structure by minimum description length. Circuits Systems Signal Process 1(3–4): 395–406 MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    De Moor B. and Golub G. (1991). The restricted singular value decomposition: properties and applications. SIAM J. Matrix Anal. Appl. 12(3): 401–425 MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Vandewalle, J., De Moor, B.: On the use of the singular value decomposition in identification and signal processing. In: Proc. of the Workshop of the NATO Advanced Study Institute on Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, pp. 321–361 (1988)Google Scholar
  39. 39.
    Jung T.-P., Makeig S., McKeown M.J., Bell A.J., Lee T.-W. and Sejnowski T.J. (2001). Imaging brain dynamics using independent component analysis. Proc. IEEE 89(7): 1107–1122 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  1. 1.University of IowaIowa CityUSA
  2. 2.Hong Kong Baptist UniversityKowloonHong Kong

Personalised recommendations