Signal, Image and Video Processing

, Volume 1, Issue 4, pp 333–346 | Cite as

Decision directed adaptive blind equalization based on the constant modulus algorithm

  • Carlos Alexandre R. Fernandes
  • Gérard FavierEmail author
  • Joao Cesar M. Mota
Original paper


In this paper, new decision directed algorithms for blind equalization of communication channels are presented. These algorithms use informations about the last decided symbol to improve the performance of the constant modulus algorithm (CMA). The main proposed technique, the so called decision directed modulus algorithm (DDMA), extends the CMA to non-CM modulations. Assuming correct decisions, it is proved that the decision directed modulus (DDM) cost function has no local minima in the combined channel-equalizer system impulse response. Additionally, a relationship between the Wiener and DDM minima is established. The other proposed algorithms can be viewed as modifications of the DDMA. They are divided into two families: stochastic gradient algorithms and recursive least squares (RLS) algorithms. Simulation results allow to compare the performance of the proposed algorithms and to conclude that they outperform well-known methods.


Blind equalization CMA Decision directed Stochastic gradient RLS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Godard D.N. (1980). Self-recovering equalization and carrier tracking in two dimensional data communication systems. IEEE Trans. Commun. 28(11): 1867–1875 CrossRefGoogle Scholar
  2. 2.
    Treichler J. and Agee B. (1983). A new approach to multipath correction of constant modulus signals. IEEE Trans. Acoust Speech Signal Proces. 31(2): 459–472 CrossRefGoogle Scholar
  3. 3.
    Zeng H.H., Tong L. and Johnson C.R. (1999). An analysis of constant modulus receivers. IEEE Trans. Signal Proces. 47(11): 2990–2999 CrossRefGoogle Scholar
  4. 4.
    Schniter P. and Johnson C.R. (2000). Sufficient conditions for the local convergence of constant modulus algorithms. IEEE Trans. Signal Proces. 48(10): 2785–2796 CrossRefGoogle Scholar
  5. 5.
    Fijalkow, I., de Victoria, F.L., Johnson, C.R. Jr.: Adaptive fractionally spaced blind equalization. In: IEEE Digital Signal Processing Workshop, pp. 257–260 Yosemite National Park, 2–5 October (1994)Google Scholar
  6. 6.
    Touzni, A., Fijalkow, I., Treichler, J.R.: Fractionally-spaced CMA under channel noise. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing, vol. 5, pp. 2674–2677 Atlanta, 7–10 May (1996)Google Scholar
  7. 7.
    Larimore, M.G., Treichler, J.R.: Convergence behavior of the Constant Modulus Algorithm. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing, vol. 8, pp. 13–16 Boston (1983)Google Scholar
  8. 8.
    Brooks, D., Lambotharan, S., Chambers, J.: Optimum delay and mean square error using CMA. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing, vol. 9, pp. 3361–3364 Seattle, 12–15 May (1998)Google Scholar
  9. 9.
    Ding Z., Kennedy R.A., Anderson B.D.O. and Johnson C.R. (1991). Ill-convergence of Godard blind equalizers in data communications systems. IEEE Trans. on Commun. 39(9): 1313–1327 zbMATHCrossRefGoogle Scholar
  10. 10.
    Fijalkow I., Manlove C.E. and Johnson C.R. (1998). Adaptive fractionally spaced blind CMA equalization: Excess MSE. IEEE Trans. Signal Proces. 46(1): 227–231 CrossRefGoogle Scholar
  11. 11.
    Johnson, C.R. Jr., Schniter, P., Endres, T.J., Behm, J.D., Brown, D.R., Casas, R.A.: Blind equalization using the Constant Modulus criterion: a review. In: Proc. IEEE, 86(10), 1927–1950 (1998)Google Scholar
  12. 12.
    Lucky R. (1965). Automatic equalization for digital communication. Bell Systems Tech. J. 44(4): 547–588 MathSciNetGoogle Scholar
  13. 13.
    Oh, K.N., Chin, Y.O.: Modified constant modulus algorithm: blind equalization and carrier phase recovery algorithm. In: Int. Conf. on Communications, vol. 1, pp. 498–502 Seattle, 18–22 June (1995)Google Scholar
  14. 14.
    Yang J., Werner J.-J. and Dumont G.A. (2002). The multimodulus blind equalization and its generalized algorithms. IEEE J. Selected Areas Commun. 20(5): 997–1015 CrossRefGoogle Scholar
  15. 15.
    Ready, M.J., Gooch, R.P.: Blind equalization based on radius directed adaptation. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing, vol. 3, pp. 1699–1702 Albuquerque, 3–6 April (1990)Google Scholar
  16. 16.
    Axford, R.A., Milstein, L., Zeidler, J.: A dual-mode algorithm for blind equalization of QAM signals: CADAMA. in Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 172–176 Pacific Grove, Sept. (1995)Google Scholar
  17. 17.
    Banovic K., Abdel-Raheem E. and Khalid M.A.S. (2006). A novel radius-adjusted approach for blind adaptive equalization. IEEE Trans. Signal Proces. 13(1): 37–40 CrossRefGoogle Scholar
  18. 18.
    He L., Amin M.G., Malkemes R.C. and Reed C. (2004). A hybrid adaptive blind equalization algorithm for QAM signals in wireless communications. IEEE Trans. Signal Proces. 52(7): 2058–2069 CrossRefMathSciNetGoogle Scholar
  19. 19.
    Foschini J.G. (1985). Equalizing without altering or detecting data. AT & T Tech. J. 64(8): 1885–1911 Google Scholar
  20. 20.
    Ding Z., Kennedy R.A. and Johnson C.R. (1992). On the (non)existence of local equilibria of Godard blind equalizers. IEEE Trans. Signal Proces. 40(10): 2425–2433 zbMATHCrossRefGoogle Scholar
  21. 21.
    Li Y. and Ding Z. (1996). Global convergence of fractionally spaced Godard (CMA) adaptive equalizers. IEEE Trans. Signal Proces. 44(4): 818–826 CrossRefMathSciNetGoogle Scholar
  22. 22.
    Li Y., Liu K.J.R. and Ding Z. (1996). Length- and cost-dependent local minima of unconstrained blind channel equalizers. IEEE Trans. Signal Proces. 44(11): 2726–2735 CrossRefGoogle Scholar
  23. 23.
    Fijalkow I., Touzni A. and Treichler J.R. (1997). Fractionally spaced equalization using CMA: Robustness to channel noise and lack of disparity. IEEE Trans. Inf. Theory 45(1): 56–66 Google Scholar
  24. 24.
    LeBlanc J.P., Fijalkow I. and Johnson C.R. (1998). CMA fractionally spaced equalizers: Stationary points and stability under iid and temporally correlated sources. Int. J. Adap. Control Signal Proces. 12(2): 135–155 zbMATHCrossRefGoogle Scholar
  25. 25.
    Zeng, H.H., Tong, L., Johnson, C.R. Jr.: Behavior of fractionally-spaced constant modulus algorithm: mean square error, robustness and local minima. In: Asilomar Conf. on Signals, Systems and Computers, vol. 1, pp. 310–314 Pacific Grove, 3–6 Nov. (1996)Google Scholar
  26. 26.
    Enders, T.J., Anderson, B.D.O., Johnson, C.R. Jr., Green, M.: On the robustness of fractionally-spaced constant modulus criterion to channel order undermodeling: Part I. In: IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications, pp. 37–40 Paris, 16–18 April (1997)Google Scholar
  27. 27.
    Enders, T.J., Anderson, B.D.O., Johnson, C.R. Jr., Green, M.: On the robustness of fractionally-spaced constant modulus criterion to channel order undermodeling: Part II. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing, pp. 3605–3608 Munich, 20–24 April (1997)Google Scholar
  28. 28.
    Sharma, V., Raj, V.N.: Convergence and performance analysis of Godard family of blind equalization algorithms. In: IEEE Int. Conf. on Communications vol. 4, pp. 2577–2582 11–15 May (2003)Google Scholar
  29. 29.
    Zeng H.H., Tong L. and Johnson C.R. (1998). Relationships between the Constant Modulus and Wiener receivers. IEEE Trans. Inf. Theory 44(4): 1523–1538 zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Suyama, R., de F. Attux, R.R., Romano, J.M.T., Bellanger, M.: Relationship between constant modulus and Wiener criteria. In: GRETSI, Paris, France, 8–11 Sept. (2003)Google Scholar
  31. 31.
    Yuan J.T. and Tsai K.D. (2005). Analysis of the multimodulus blind equalization algorithm in QAM communication systems. IEEE Trans. Commun. 53(9): 1427–1431 CrossRefGoogle Scholar
  32. 32.
    Pickholtz, R., Elbarbary, K.: The recursive constant modulus algorithm: a new approach for real time array processing. In: Asilomar Conf. on Signals, Systems and Computers, vol. 1, pp. 627–632 Pacific Grove, 1–3 Nov. (1993)Google Scholar
  33. 33.
    Hilal, K.: Accelerated algorithms for adaptive blind equalization. Ph.D. dissertation, ENST Paris, France (1993)Google Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  • Carlos Alexandre R. Fernandes
    • 1
  • Gérard Favier
    • 1
    Email author
  • Joao Cesar M. Mota
    • 2
  1. 1.I3S Laboratory, CNRS, University of Nice-Sophia AntipolisSophia-Antipolis CedexFrance
  2. 2.Wireless Telecommunication Research Group (GTEL)Federal University of CearáFortalezaBrazil

Personalised recommendations