Advertisement

Signal, Image and Video Processing

, Volume 1, Issue 3, pp 179–189 | Cite as

Global motion estimation from randomly selected motion vector groups and GM/LM based applications

  • Xueming Qian
  • Guizhong Liu
Original paper

Abstract

Fast global motion estimation has been paid much attention in video compression and analysis. In this paper, a global motion estimation method is proposed by randomly selected motion vector groups in the compression domain directly. It is carried out by refining the centroid of the global motion parameters corresponding to the motion vector groups. Simulation results on different global motions show its effectiveness and robustness against noise and motion vector loss. Finally, two applications, namely the text occluded region recovery and the error concealment, are presented using the global motion/local motion information. Experimental results show the effectiveness of the proposed method.

Keywords

Global motion estimation Motion vector Compressed domain Text-occluded region recovery Error concealment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Qi, B., Amer, A.: Robust and fast global motion estimation oriented to video object segmentation. In: Proceedings of International Conference Image Processing, Genoa, Italy, pp. 153–156, 24–27 September 2005Google Scholar
  2. 2.
    Wang, P., Cai, R., Li, B., Yang, S.: A pinhole camera modeling of motion vector field for tennis video analysis. In: Proceedings of International Conference Image Processing, Singapore, pp. 705–708, 24–27 October 2004Google Scholar
  3. 3.
    Yi, H., Rajan, D., Chia, L.: Global motion compensated key frame extraction from compressed videos. In: Proceedings of International Conference Acoustics, Speech, and Signal Processing, Pennsylvania, Philadelphia, pp. II/453–II/456, 18–23 March 2005Google Scholar
  4. 4.
    Yu T. and Zhang Y. (2001). Retrieval of video clips using global motion information. Electron. Lett. 37(14): 893–895 CrossRefGoogle Scholar
  5. 5.
    Su Y.P., Sun M.T. and Hsu V. (2005). Global motion estimation from coarsely sampled motion vector field and the applications. IEEE Trans. Circuits Syst. Video Technol. 15(2): 232–242 CrossRefGoogle Scholar
  6. 6.
    Su, Y.P., Sun, M.T.: A Non-iterative motion vector based global motion estimation algorithm. In: Proceedings of International Conference Multimedia and Expo, Taipei, Taiwan, pp. 703–706, 27–30 June 2004Google Scholar
  7. 7.
    Dufaux F. and Konrad J. (2000). Efficient, robust and fast global motion estimation for video coding. IEEE Trans. Image Process. 9(3): 497–501 CrossRefGoogle Scholar
  8. 8.
    MPEG-4 Video Verification Model version 18.0.: ISO/IEC JTC1/SC29/WG11 (2001)Google Scholar
  9. 9.
    Keller Y. and Averbuch A. (2003). Fast gradient methods based on global motion estimation for video compression. IEEE Trans. Circuits Syst. Video Technol. 13(4): 300–309 CrossRefGoogle Scholar
  10. 10.
    Stiller C. and Konrad J. (1999). Estimating motion in image sequences, a tutorial on modeling and computation of 2D motion. IEEE Signal Process. Mag. 16(7): 70–91 CrossRefGoogle Scholar
  11. 11.
    Lee C.W., Jung K. and Kim H.J. (2003). Automatic text detection and removal in video sequences. Patt. Recog. Lett. 24(15): 2607–2623 CrossRefGoogle Scholar
  12. 12.
    Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of Siggraph, Louisiana, USA, pp.~417–424, 23–28 July 2000Google Scholar
  13. 13.
    Chi, M., Chen, M., Liu, J., Hsu, C.: High performance error concealment algorithm by motion vector refinement for MPEG-4 video. In: Proceedings of International Conference Circuits and Systems, Gammarth, Tunisia, pp. 2895–2898, 11–14 May 2005Google Scholar
  14. 14.
    Nemethova, O., Moghrabi, A., Rupp, M.: Flexible error concealment for H.264 based on directional interpolation. In: Proceedings of International Conference Wireless Networks, Communications and Mobile Computing, Hawaii, USA, pp.~1255–1260, 13–16 June 2005Google Scholar
  15. 15.
    Chen M., Chen C. and Chi M. (2005). Temporal error concealment algorithm by recursive block-matching principle. IEEE Trans. Circuits Syst. Video Technol. 15(11): 1385–1393 CrossRefGoogle Scholar
  16. 16.
    Sub J. and Ho Y. (1997). Error concealment based on directional interpolation. IEEE Trans. Consum. Electron. 43(3): 295–302 CrossRefGoogle Scholar
  17. 17.
    Tsai, T.H., Lee, Y.X., Lin, Y.F.: Video error concealment techniques using progressive interpolation and boundary matching algorithm. In: Proceedings of International Symposium Circuits and System, Vancouver, Canada, pp. 433–436, 23–26 May 2004Google Scholar
  18. 18.
    Chen, T., Zhang, X., Shi, Y.: Error concealment using refined boundary matching algorithm. In: Proceedings of International Conference Information Technology, Research and Education, New Jersey, USA, pp. 55–59, 11–13 August 2003Google Scholar
  19. 19.
    Lie W. and Gao Z. (2006). Video error concealment by integrating greedy suboptimization and Kalman filtering techniques. IEEE Trans. Circuits Syst. Video Technol. 16(8): 982–992 CrossRefGoogle Scholar
  20. 20.
    Tang X.-O., Gao X.-B., Liu J.-Z. and Zhang H.-J. (2002). A Spatial–Temporal approach for video caption detection and recognition. IEEE Trans. Neural Networks. 13(4): 961–971 CrossRefGoogle Scholar
  21. 21.
    Qian, X., Liu, G.: Text detection, localization and segmentation in compressed videos. In: Proceedings of International Conference on Acoustics, Speech, and Signal Processing, Toulouse, France, pp. II/385-II/388, 14–19 May 2006Google Scholar

Copyright information

© Springer-Verlag London Limited 2007

Authors and Affiliations

  1. 1.School of Electronics and Information EngineeringXi’an Jiaotong UniversityShannxiChina

Personalised recommendations