, Volume 5, Issue 2, pp 344–359 | Cite as

The Gravity of Archaeology



One of the defining features of the material culture of space exploration is the fact that much of it is “out there”: in orbit around celestial bodies and on planetary surfaces. In outer space, we have to rethink the meaning of place. Cartesian coordinates must be replaced with equations of motion to describe the ceaseless movement of heavenly objects in relation to centres of gravity. Archaeological sites in space are not solid condensations of artefacts, hundreds or thousands of years compressed into layers perhaps only centimetres deep. The materials of an archaeological deposit become rather a cloud or swarm. But for both Earth and space, gravity is the structuring force. In this paper I want to reconceptualise archaeological sites according to their position in the gravity well, using dynamical systems and Riemann surfaces. I then consider the Mir space station as an example of a site existing simultaneously on Earth and in orbit, as a preliminary excursion towards a frame of reference that can be used to effectively conduct an archaeology in outer space.


Space archaeology Orbital debris Mir space station Gravity 


Une des fonctions définissant la culture matérielle de l’exploration spatiale est le fait que beaucoup sont “présentes”: dans l’orbite autour de corps célestes et des surfaces planétaires. Des coordonnées cartésiennes doivent être remplacées par des équations de mouvement pour décrire le mouvement incessant d’objets célestes par rapport aux centres de gravité. Des sites archéologiques dans l’espace ne sont pas les condensations solides d’artefacts, des centaines ou des milliers d’années comprimées dans des couches peut-être seulement de quelques centimètres. Les matériels d’un dépôt archéologique deviennent plutôt un nuage ou une nuée. Mais tant pour la terre que l’espace, la gravité est la force de structuration. Dans cet article je veux conceptualiser des sites archéologiques selon leur position dans la gravité, en utilisant des systèmes dynamiques et des surfaces de Riemann. Je considère ensuite la station spatiale Mir en tant qu’exemple d’un site existant simultanément sur la terre et dans son orbite, comme une excursion préliminaire vers un système de référence qui peut être utilisé pour efficacement conduire une archéologie dans le cosmos.


Una de las características que definen la cultura material de la exploración espacial es que gran parte de ella está « ahí fuera » : orbitando alrededor de cuerpos celestiales y en superficies planetarias. En el espacio exterior tenemos que replantearnos el significado de la palabra « lugar » . Las coordenadas cartesianas deben sustituirse por ecuaciones de movimiento para describir el incesante movimiento de los objetos celestiales en relación con los centros de gravedad. Los yacimientos arqueológicos espaciales no son condensaciones sólidas de artefactos, que llevan cientos o miles de años comprimidos en capas, posiblemente de solo centímetros de profundidad. Los materiales de este depósito arqueológico se convierten o en una nube o en un enjambre. Pero para la tierra y el espacio, la gravedad es la fuerza estructural. En este trabajo pretendo volver a conceptuar los yacimientos arqueológicos según su posición en la fuerza gravitatoria, usando sistemas dinámicos y superficies Riemann. Después, me centro en la estación espacial Mir como ejemplo de yacimiento que existe simultáneamente en la tierra y en órbita, antes de adentrarme en un marco de referencia que puede servir para realizar eficazmente un trabajo arqueológico en el espacio exterior.

References Cited

  1. Baker, R.M.L. Jr and Makemson, M.W. (1967). An introduction to astrodynamics (Second Edition), New York and London, Academic Press.Google Scholar
  2. Belk, C.A., Robinson, J.H., Alexander, M.B., Cooke, W.J., and Pavelitz, S.D. (1997). Meteoroids and Orbital Debris: Effects on Spacecraft, NASA Reference Publication 1408, Washington, DC.Google Scholar
  3. Brown, J.E. (1976). The roots of renewal. In W.H. Capps (ed) Seeing With a Native Eye: Essays on Native American Religion, New York, Harper and Row, pp. 25-34.Google Scholar
  4. Candela, G. (1998). An overview of the cosmology, religion and philosophical universe of Giordano Bruno. Italica 75(3): 348-364.CrossRefGoogle Scholar
  5. Centre for Orbital and Reentry Debris Studies 2000. The Final Days of Mir. Reentry Debris Footprint. (retrieved 10th April 2009).
  6. Clark, N. (2005). Ex-orbitant globality. Theory, Culture and Society 22(5):165-185.CrossRefGoogle Scholar
  7. Cohen, I.B. (1987). Newton’s Third Law and universal gravity. Journal of the History of Ideas 48(4): 571-593.CrossRefGoogle Scholar
  8. Daus, P.H. (1933). The Founding of Non-Euclidean Geometry. Mathematics News Letter 7(7/8): 12-16.Google Scholar
  9. Davis, M. (1996). Cosmic Dancers on History’s Stage? The Permanent Revolution in the Earth Sciences. New Left Review 217: 48–84.Google Scholar
  10. Derbyshire, J. (2007). Unknown quantity. A real and imaginary history of algebra, London, Atlantic Books.Google Scholar
  11. Egginton, W. (1999). On Dante, hyperspheres and the curvature of the Medieval cosmos. Journal of the History of Ideas 60(2): 195-216.CrossRefGoogle Scholar
  12. European Space Agency 2009. Space Debris: Evolution in Pictures. (retrieved 8th April 2009).
  13. Fraser, J.T. (2005). Space-time in the study of time: an exercise in critical interdisciplinarity. Kronoscope 5(2): 151-175.CrossRefGoogle Scholar
  14. Friedman, M. (1985). Kant’s Theory of Geometry. The Philosophical Review 94(4): 455-506.CrossRefGoogle Scholar
  15. Giese, R.H. (1965). Fundamentals of satellite tracking and orbit determination. In G.V. Groves (ed) Dynamics of rockets and satellites, Amsterdam, North-Holland Publishing Company, pp 113-139.Google Scholar
  16. Gorman, A. C. 2005. The Archaeology of Orbital Space. In Australian Space Science Conference 2005, pp. 338–357. RMIT University, Melbourne.Google Scholar
  17. Gorman, A.C. (2009). The cultural landscape of space. In A. Darrin and B.L. O’Leary (eds) The handbook of space engineering, archaeology and heritage, Boca Raton, Florida: CRC Press, pp 331-342.Google Scholar
  18. Hays, P.L. and C.D. Lutes (2007). Towards a theory of spacepower. Space Policy 23: 206-209.CrossRefGoogle Scholar
  19. Kant, I. 1781 [1934]. Critique of Pure Reason. Dent, London.Google Scholar
  20. Katok, A. and B. Hasselblatt (1995). Introduction to the modern theory of dynamical systems, New York, Cambridge University Press.Google Scholar
  21. Lane, S.N. (2001). Constructive comments on D Massey ‘Space-Time, “Science” and the Relationship between Physical Geography and Human Geography’ Transactions of the Institute of British Geographers, NS 26(2): 243-256.CrossRefGoogle Scholar
  22. Lewis, C. S. 1968. Out of the Silent Planet. Pan Books, London.Google Scholar
  23. MacDonald, F. (2007). Anti-astropolitik: outer space and the orbit of geography. Progress in Human Geography 31(5): 592-615.CrossRefGoogle Scholar
  24. Markoff, J. 2001. My Fiji Souvenirs: Shells, Driftwood, Space Debris. New York Times. (retrieved 10th April 2009).
  25. Mason, O.T. 1894 Technogeography of the relation of the Earth to the industries of mankind. The American Anthropologist 7(2): 137-161.CrossRefGoogle Scholar
  26. Massey, D. (1999). Space-time, “Science” and the relationship between physical geography and human geography. Transactions of the Institute of British Geographers NS 24(3): 261-276.CrossRefGoogle Scholar
  27. Melchior, P.J. (1978). Tides of the planet earth, Oxford, Pergamon Press.Google Scholar
  28. Morner, N.A. (1981). Eustasy, paleoglaciation and paleoclimatology. International Journal of Earth Sciences 70(2): 691-702.Google Scholar
  29. Morner, N.A. (1984). Terrestrial, solar and galactic origin of the Earth’s geophysical variables. Geografiska Annaler Series A, Physical Geography 66(1-2): 1-9.CrossRefGoogle Scholar
  30. NASA (1997). International Space Station. Russian Space Stations. NASA Facts, Houston, Texas, Lyndon B. Johnson Space Center.Google Scholar
  31. Newton, I. 1687. Philosophiae Naturalis Principia Mathematica. London.Google Scholar
  32. Osserman, R. (1995). The poetry of the universe. London, Weidenfeld and Nicholson.Google Scholar
  33. Palis, J. and W. de Melo (1982). Geometric theory of dynamical systems: an introduction, New York, Springer-Verlag.Google Scholar
  34. Pillans, B., J. Chapell and T.R. Naish (1998). A review of the Milankovitch climatic beat: template for Plio-Pleistocene sea-level changes and sequence stratigraphy. Sedimentary Geology 122(1-4): 5-21.CrossRefGoogle Scholar
  35. Raper, J. and D. Livingstone (1995). Development of a geomorphological spatial model using object-oriented design. International Journal of Geographical Information Systems 9: 359-83.CrossRefGoogle Scholar
  36. Richardson, T. 2001. Mir Debris Fished from Ocean and up for Auction on eBay. The Register. (retrieved 10th April 2009).
  37. Riemann, B. (1854). Über die Hypothesen, welche der Geometrie zugrunde liegen. Abhandlungen der Kgl. Gesellschaft der Wissenschaften zu Göttingen. 13 (1867): 133-152.Google Scholar
  38. Ringwood, A.E. (1961). Changes in solar luminosity and some possible terrestrial consequences. Geochimica et Cosmochimica Acta 21(3-4): 295-296.CrossRefGoogle Scholar
  39. Stuiver, M. and P.D. Quay (1980). Changes in Atmospheric Carbon-14 Attributed to a Variable Sun. Science 207(4426): 11-19.CrossRefGoogle Scholar
  40. Thornes, J.B. (1983). Evolutionary geomorphology. Geography 68: 225-235.Google Scholar
  41. Weeks, J.R. (1985). The shape of space. How to visualise surfaces and three-dimensional manifolds, New York and Basel, Marcel Dekker Inc.Google Scholar
  42. Wilson, E.W. (1965). The Moon and the American Indian. Western Folklore 24(2): 87-100.CrossRefGoogle Scholar
  43. Young, M.J. (1987). “Pity the Indians of Outer Space”: Native American views of the Space Program. Western Folklore 46(4): 269-279.CrossRefGoogle Scholar

Copyright information

© World Archaeological Congress 2009

Authors and Affiliations

  1. 1.Department of ArchaeologyFlinders UniversityAdelaideAustralia

Personalised recommendations