pp 1–24 | Cite as

Fleet management for autonomous vehicles using flows in time-expanded networks

  • Sahar Bsaybes
  • Alain Quilliot
  • Annegret K. WaglerEmail author
Original Paper


VIPAFLEET is a framework to manage a fleet of Individual public autonomous vehicles (VIPA). We consider a fleet of cars distributed at specified stations in an industrial area to supply internal transportation, where the cars can be used in different modes of circulation (tram mode, elevator mode, taxi mode). We treat in this paper the pickup and delivery problem related to the taxi mode by means of flows in time-expanded networks. This enables us to compute optimal offline solutions, to propose strategies for the online situation, and to evaluate their performance in comparison with the optimal offline solution.


Fleet management Offline and online pickup and delivery problem 



  1. Ahuja RK, Magnanti TL, Orlin JB (1993) Network flows: theory, algorithms, and applications. Prentice Hall, Upper Saddle River, New Jersey. ISBN 0-13-617549-XGoogle Scholar
  2. Ascheuer N, Krumke SO, Rambau J (1998) The online transportation problem: competitive scheduling of elevators. ZIBGoogle Scholar
  3. Ascheuer N, Krumke SO, Rambau J (2000) Online dial-a-ride problems: minimizing the completion time. In: STACS 2000. Springer, pp 639–650Google Scholar
  4. Ausiello G, Feuerstein E, Leonardi S, Stougie L, Talamo M (1995) Competitive algorithms for the on-line traveling salesman. In: Workshop on algorithms and data structures. Springer, pp 206–217Google Scholar
  5. Ausiello G, Feuerstein E, Leonardi S, Stougie L, Talamo M (2001) Algorithms for the on-line travelling salesman 1. Algorithmica 29(4):560–581CrossRefGoogle Scholar
  6. Berbeglia G, Cordeau JF, Laporte G (2010) Dynamic pickup and delivery problems. Eur J Oper Res 202(1):8–15CrossRefGoogle Scholar
  7. Boland N, Hewitt M, Marshall L, Savelsbergh M (2017) The continuous-time service network design problem. Oper Res 65:1303–1321CrossRefGoogle Scholar
  8. Borodin A, El-Yaniv R (2005) Online computation and competitive analysis. Cambridge University Press, CambridgeGoogle Scholar
  9. Bsaybes S (2017) Modèles et algorithmes de gestion de flottes de véhicules vipa. Ph.D. thesis, Université Clermont AuvergneGoogle Scholar
  10. Bsaybes S, Quilliot A, Wagler AK (2017) Fleet management for autonomous vehicles using flows in time-expanded networks. Electron Notes Discrete Math (Special Issue of LAGOS 2017) 62:255–260CrossRefGoogle Scholar
  11. Bsaybes S, Quilliot A, Wagler AK (2018a) Fleet management for autonomous vehicles: online PDP under special constraints. RAIRO Oper Res. Google Scholar
  12. Bsaybes S, Quilliot A, Wagler AK (2018b) Fleet management for autonomous vehicles using multicommodity coupled flows in time-expanded networks. In: D’Angelo G (ed) 17th International symposium on experimental algorithms (SEA 2018), Leibniz international proceedings in informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, vol 103, pp 25:1–25:14.
  13. Cordeau JF, Laporte G (2007) The dial-a-ride problem: models and algorithms. Ann Oper Res 153(1):29–46CrossRefGoogle Scholar
  14. Deleplanque S, Quilliot A (2013) Transfers in the on-demand transportation: the DARPT Dial-a-Ride Problem with transfers allowed. In: Multidisciplinary international scheduling conference: theory and applications (MISTA), pp 185–205Google Scholar
  15. Dragomir AG, Nicola D, Soriano A, Gansterer M (2018) Multidepot pickup and delivery problems in multiple regions: a typology and integrated model. Int Trans Oper Res 25(2):569–5971CrossRefGoogle Scholar
  16. Eglese RB, Zambirinis S (2018) Disruption management in vehicle routing and scheduling for road freight transport: a review. TOP 26:1CrossRefGoogle Scholar
  17. Fabri A, Recht P (2007) Online dial-a-ride problem with time windows: an exact algorithm using status vectors. In: Operations research proceedings 2006. Springer, pp 445–450Google Scholar
  18. Ford LR Jr, Fulkerson DR (1958) Constructing maximal dynamic flows from static flows. Oper Res 6(3):419–433CrossRefGoogle Scholar
  19. Groß M, Skutella M (2011) Generalized maximum flows over time. In: International workshop on approximation and online algorithms. Springer, pp 247–260Google Scholar
  20. Grötschel M, Krumke SO, Rambau J (2013) Online optimization of large scale systems. Springer, New YorkGoogle Scholar
  21. Kliewer N, Mellouli T, Suhl L (2006) A time-space network based exact optimization model for multi-depot bus scheduling. Eur J Oper Res 175(3):1616–1627CrossRefGoogle Scholar
  22. Koch R, Nasrabadi E, Skutella M (2011) Continuous and discrete flows over time. Math Methods Oper Res 73(3):301CrossRefGoogle Scholar
  23. Lenstra JK, Kan A (1981) Complexity of vehicle routing and scheduling problems. Networks 11(2):221–227CrossRefGoogle Scholar
  24. Lucas K, Roosen P (2010) Emergence, analysis and evolution of structures: concepts and strategies across disciplines. Springer, BerlinCrossRefGoogle Scholar
  25. Munari P, Morabito RVP (2018) A branch-price-and-cut algorithm for the vehicle routing problem with time windows and multiple deliverymen. TOP 26:437CrossRefGoogle Scholar
  26. Royer E, Bom J, Dhome M, Thuilot B, Lhuillier M, Marmoiton F (2005) Outdoor autonomous navigation using monocular vision. In: Intelligent robots and systems (IROS 2005). IEEE, pp 1253–1258Google Scholar
  27. Royer E, Marmoiton F, Alizon S, Ramadasan D, Slade M, Nizard A, Dhome M, Thuilot B, Bonjean F (2016) Retour d’expérience après plus de 1000 km en navette sans conducteur guidée par vision. RFIA2016Google Scholar
  28. Yang J, Jaillet P, Mahmassani H (2004) Real-time multivehicle truckload pickup and delivery problems. Transp Sci 38(2):135–148CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2019

Authors and Affiliations

  1. 1.Université Grenoble Alpes, Grenoble INP, G-SCOPGrenobleFrance
  2. 2.Université Clermont Auvergne (LIMOS UMR CNRS 6158)Clermont-FerrandFrance

Personalised recommendations