, Volume 25, Issue 3, pp 579–600 | Cite as

New characterizations of the Owen and Banzhaf–Owen values using the intracoalitional balanced contributions property

  • Silvia Lorenzo-FreireEmail author
Original Paper


In this paper, several characterizations of the Owen and the Banzhaf–Owen values are provided. All the characterizations make use of a property based on the principle of balanced contributions. This property is called the intracoalitional balanced contributions property and was defined by Calvo et al. (Math Soc Sci 31:171–182, 1996).


Cooperative game Shapley value Banzhaf value Coalition structure Balanced contributions 

Mathematics Subject Classification




Financial support from Ministerio de Ciencia y Tecnología through Grant ECO2011-23460 and from Ministerio de Economía y Competitividad through Grant MTM2014-53395-C3-1-P is gratefully acknowledged. Partial support from Xunta de Galicia through Grants ED431G/012016-2019 and ED431C2016-015 is gratefully acknowledged. I am also very grateful for the interesting comments of two anonymous referees.


  1. Albizuri MJ (2001) An axiomatization of the modified Banzhaf–Coleman index. Int J Game Theory 30:167–176CrossRefGoogle Scholar
  2. Albizuri MJ (2008) Axiomatizations of the Owen value without efficiency. Math Soc Sci 55:78–89CrossRefGoogle Scholar
  3. Alonso-Meijide JM, Carreras F, Fiestras-Janeiro MG, Owen G (2007) A comparative axiomatic characterization of the Banzhaf–Owen coalitional value. Decis Support Syst 43:701–712CrossRefGoogle Scholar
  4. Alonso-Meijide JM, Casas-Méndez B, González-Rueda A, Lorenzo-Freire S (2014) Axiomatic of the Shapley value of a game with a priori unions. TOP 22:749–770CrossRefGoogle Scholar
  5. Alonso-Meijide JM, Casas-Méndez B, González-Rueda A, Lorenzo-Freire S (2016) The Owen and Banzhaf–Owen values revisited. Optimization 65(6):1277–1291CrossRefGoogle Scholar
  6. Alonso-Meijide JM, Fiestras-Janeiro MG (2002) Modification of the Banzhaf value for games with a coalition structure. Ann Oper Res 109:213–227CrossRefGoogle Scholar
  7. Amer R, Carreras F, Giménez JM (1995) The modified Banzhaf value for games with coalition structure: an axiomatic characterization. Math Soc Sci 43:45–54CrossRefGoogle Scholar
  8. Aumann RJ, Drèze J (1974) Cooperative games with coalition structures. Int J Game Theory 3:217–237CrossRefGoogle Scholar
  9. Banzhaf JF (1965) Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Rev 19:317–343Google Scholar
  10. Calvo E, Gutiérrez E (2010) Solidarity in games with a coalition structure. Math Soc Sci 60:196–203CrossRefGoogle Scholar
  11. Calvo E, Lasaga J, Winter E (1996) The principle of balanced contributions and hierarchies of cooperation. Math Soc Sci 31:171–182CrossRefGoogle Scholar
  12. Calvo E, Santos JC (1997) Potentials in cooperative TU-games. Math Soc Sci 34:175–190CrossRefGoogle Scholar
  13. Casajus A (2010) Another characterization of the Owen value without the additivity axiom. Theory Decis 69:523–536CrossRefGoogle Scholar
  14. Gómez-Rúa M, Vidal-Puga JJ (2010) The axiomatic approach to three values in games with coalition structure. Eur J Oper Res 207(2):795–806CrossRefGoogle Scholar
  15. Hamiache G (1999) A new axiomatization of the Owen value for games with coalition structures. Math Soc Sci 37:281–305CrossRefGoogle Scholar
  16. Hamiache G (2001) The Owen value values friendship. Int J Game Theory 29:517–532CrossRefGoogle Scholar
  17. Hart S, Kurz M (1983) Endogeneous formation of coalitions. Econometrica 51:1047–1064CrossRefGoogle Scholar
  18. Hart S, Mas-Collel A (1989) Potential, value and consistency. Econometrica 57:589–614CrossRefGoogle Scholar
  19. Hart S, Mas-Collel A (1996) Bargaining and value. Econometrica 64(2):357–380CrossRefGoogle Scholar
  20. Kamijo Y (2009) A two-step Shapley value in a cooperative game with a coalition structure. Int Game Theory Rev 11(2):207–214CrossRefGoogle Scholar
  21. Khmelnitskaya AB, Yanovskaya EB (2007) Owen coalitional value without additivity axiom. Math Methods Oper Res 66(2):255–261CrossRefGoogle Scholar
  22. Lehrer E (1988) An axiomatization of the Banzhaf value. Int J Game Theory 17:89–99CrossRefGoogle Scholar
  23. Lorenzo-Freire S (2016) On new characterizations of the Owen value. Oper Res Lett 44(4):491–494CrossRefGoogle Scholar
  24. Myerson RB (1980) Conference structures and fair allocation rules. Int J Game Theory 9:169–182CrossRefGoogle Scholar
  25. Nowak AS (1997) On an axiomatization of the Banzhaf value without the additivity axiom. Int J Game Theory 26:137–141CrossRefGoogle Scholar
  26. Owen G (1977) Values of games with a priori unions. In: Henn R, Moeschlin O (eds) Essays in mathematical economics and game theory. Springer, Berlin, pp 76–88CrossRefGoogle Scholar
  27. Owen G (1982) Modification of the Banzhaf–Coleman index for games with a priori unions. In: Holler MJ (ed) Power, voting and voting power. Physica-Verlag, Berlin, pp 232–238Google Scholar
  28. Sánchez F (1997) Balanced contributions axiom in the solution of cooperative games. Games Econ Behav 20:161–168CrossRefGoogle Scholar
  29. Shapley LS (1953) A value for n-person games. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games II. Princeton University Press, Princeton, pp 307–317Google Scholar
  30. Vázquez-Brage M, van den Nouweland A, García-Jurado I (1997) Owen’s coalitional value and aircraft landing fees. Math Soc Sci 34(3):273–286CrossRefGoogle Scholar
  31. Winter E (1992) The consistency and potential for values of games with coalition structure. Games Econ Behav 4:132–144CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2017

Authors and Affiliations

  1. 1.MODES Research Group, Department of Mathematics, Faculty of Computer ScienceUniversidade da CoruñaA CoruñaSpain

Personalised recommendations