Advertisement

TOP

, Volume 22, Issue 2, pp 749–770 | Cite as

Axiomatic of the Shapley value of a game with a priori unions

  • J. M. Alonso-Meijide
  • B. Casas-Méndez
  • A. M. González-Rueda
  • S. Lorenzo-FreireEmail author
Original Paper

Abstract

In this paper, we define a modification of the Shapley value for the model of TU games with a priori unions. We provide two characterizations of this value and a new characterization of the Banzhaf–Owen coalitional value.

Keywords

Cooperative game Shapley value A priori unions Coalitional value 

Mathematics Subject Classification (2010)

91A12 

Notes

Acknowledgements

Financial support from Ministerio de Ciencia y Tecnología and FEDER through grants MTM2011-27731-C03-02 and ECO2011-23460 is gratefully acknowledged. The authors are also very grateful for the interesting suggestions given by three anonymous referees.

References

  1. Alonso-Meijide JM, Fiestras-Janeiro MG (2002) Modification of the Banzhaf value for games with a coalition structure. Ann Oper Res 109:213–227 CrossRefGoogle Scholar
  2. Alonso-Meijide JM, Fiestras-Janeiro MG, Carreras F (2005) The multilinear extension and the symmetric coalition Banzhaf value. Theory Decis 59:111–126 CrossRefGoogle Scholar
  3. Alonso-Meijide JM, Carreras F, Fiestras-Janeiro MG, Owen G (2007a) A comparative axiomatic characterization of the Banzhaf–Owen coalitional value. Decis Support Syst 43:701–712 CrossRefGoogle Scholar
  4. Alonso-Meijide JM, Carreras F, Puente MA (2007b) Axiomatic characterizations of the symmetric coalitional binomial semivalues. Discrete Appl Math 155:2282–2293 CrossRefGoogle Scholar
  5. Alonso-Meijide JM, Álvarez-Mozos M, Fiestras-Janeiro MG (2012) Notes on a comment on 2-efficiency and the Banzhaf value. Appl Math Lett 25:1098–1100 CrossRefGoogle Scholar
  6. Álvarez-Mozos M, Tejada O (2011) Parallel characterizations of a generalized Shapley value and a generalized Banzhaf value for cooperative games with levels structure of cooperation. Decis Support Syst 52:21–27 CrossRefGoogle Scholar
  7. Álvarez-Mozos M, van den Brink R, van der Laan G, Tejada O (2013) Share functions for cooperative games with levels structure of cooperation. Eur J Oper Res 224:167–179 CrossRefGoogle Scholar
  8. Amer R, Carreras F (1995) Cooperation indices and coalitional value. Top 3:117–135 CrossRefGoogle Scholar
  9. Amer R, Carreras F, Giménez JM (2002) The modified Banzhaf value for games with coalition structure: an axiomatic characterization. Math Soc Sci 43:45–54 CrossRefGoogle Scholar
  10. Aumann RJ, Drèze J (1974) Cooperative games with coalition structures. Int J Game Theory 3:217–237 CrossRefGoogle Scholar
  11. Banzhaf JF (1965) Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Rev 19:317–343 Google Scholar
  12. Carreras F, Magaña A (1994) The multilinear extension and the modified Banzhaf–Coleman index. Math Soc Sci 28:215–222 CrossRefGoogle Scholar
  13. Carreras F, Llongueras MD, Magaña A (2005) On the convenience to form coalitions or partnerships in simple games. Ann Oper Res 137:67–89 CrossRefGoogle Scholar
  14. Gómez-Rúa M, Vidal-Puga J (2010) The axiomatic approach to three values in games with coalition structure. Eur J Oper Res 207:795–806 CrossRefGoogle Scholar
  15. Hamiache G (1999) A new axiomatization of the Owen value for games with coalition structures. Math Soc Sci 37:281–305 CrossRefGoogle Scholar
  16. Kamijo Y (2013) The collective value: a new solution for games with coalition structures. Top. Article in press. doi: 10.1007/s11750-011-0191-y
  17. Lehrer E (1988) An axiomatization of the Banzhaf value. Int J Game Theory 17:89–99 CrossRefGoogle Scholar
  18. Meng FY (2011) The Banzhaf–Owen value for fuzzy games with a coalition structure. Eng Technol 80:855–859 Google Scholar
  19. Nowak AS (1997) On an axiomatization of the Banzhaf value without the additivity axiom. Int J Game Theory 26:137–141 CrossRefGoogle Scholar
  20. Owen G (1972) Multilinear extensions of games. Manag Sci 18:64–79 CrossRefGoogle Scholar
  21. Owen G (1975) Multilinear extensions and the Banzhaf value. Nav Res Logist Q 22:741–750 CrossRefGoogle Scholar
  22. Owen G (1977) Values of games with a priori unions. In: Henn R, Moeschlin O (eds) Mathematical economics and game theory. Springer, Berlin, pp 76–88 CrossRefGoogle Scholar
  23. Owen G (1982) Modification of the Banzhaf–Coleman index for games with a priori unions. In: Holler MJ (ed) Power, voting and voting power. Physica-Verlag, Würzburg, pp 232–238 Google Scholar
  24. Owen G, Winter E (1992) The multilinear extension and the coalition structure value. Games Econ Behav 4:582–587 CrossRefGoogle Scholar
  25. Shapley LS (1953) A value for n-person games. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games II. Princeton University Press, Princeton, pp 307–317 Google Scholar
  26. Vázquez-Brage M, van den Nouweland A, García-Jurado I (1997) Owen’s coalitional value and aircraft landing fees. Math Soc Sci 34:273–286 CrossRefGoogle Scholar
  27. Winter E (1992) The consistency and potential for values of games with coalition structure. Games Econ Behav 4:132–144 CrossRefGoogle Scholar
  28. Young HP (1985) Monotonic solutions of cooperative games. Int J Game Theory 14:65–72 CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2013

Authors and Affiliations

  • J. M. Alonso-Meijide
    • 1
  • B. Casas-Méndez
    • 2
  • A. M. González-Rueda
    • 3
  • S. Lorenzo-Freire
    • 4
    Email author
  1. 1.MODESTYA Research Group, Department of Statistics and Operations Research and Faculty of SciencesUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.MODESTYA Research Group, Department of Statistics and Operations Research and Faculty of MathematicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Department of Statistics and Operations Research and Faculty of MathematicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain
  4. 4.MODES Research Group, Department of Mathematics and Faculty of Computer ScienceUniversity of A CoruñaA CoruñaSpain

Personalised recommendations