TOP

, Volume 22, Issue 1, pp 227–253 | Cite as

A maximum trip covering location problem with an alternative mode of transportation on tree networks and segments

  • Mark-Christoph Körner
  • Juan A. Mesa
  • Federico Perea
  • Anita Schöbel
  • Daniel Scholz
Original Paper

Abstract

In this paper the following facility location problem in a mixed planar-network space is considered: We assume that traveling along a given network is faster than traveling within the plane according to the Euclidean distance. A pair of points (Ai,Aj) is called covered if the time to access the network from Ai plus the time for traveling along the network plus the time for reaching Aj is lower than, or equal to, a given acceptance level related to the travel time without using the network. The objective is to find facilities (i.e. entry and exit points) on the network that maximize the number of covered pairs. We present a reformulation of the problem using convex covering sets and use this formulation to derive a finite dominating set and an algorithm for locating two facilities on a tree network. Moreover, we adapt a geometric branch and bound approach to the discrete nature of the problem and suggest a procedure for locating more than two facilities on a single line, which is evaluated numerically.

Keywords

Location Covering problem Transportation 

Mathematics Subject Classification

90B85 90B80 

References

  1. Abellanas M, Hurtado F, Sacristán V, Icking C, Ma L, Klein R, Langetep E, Palop B (2003) Voronoi diagram for services neighboring a highway. Inf Process Lett 86:283–288 CrossRefGoogle Scholar
  2. Abellanas M, Hurtado F, Palop B (2008) The heavy luggage metric. Int J Comput Geom Appl 18:295–306 CrossRefGoogle Scholar
  3. Bae SW, Kim JH, Chwa KY (2009) Optimal construction of the city voronoi diagram. Int J Comput Geom 19:95–117 CrossRefGoogle Scholar
  4. Berman O, Krass D, Drezner Z (2003) The gradual covering decay location problem on a network. Eur J Oper Res 151:474–480 CrossRefGoogle Scholar
  5. Blanquero R, Carrizosa E (2009) Continuous location problems and big triangle small triangle: constructing better bounds. J Glob Optim 45:389–402 CrossRefGoogle Scholar
  6. Cardinal J, Collette S, Hurtado F, Langerman S, Palop B (2008) Optimal location of transportation devices. Comput Geom 41:319–329 CrossRefGoogle Scholar
  7. Carrizosa E, Rodríguez-Chía A (1997) Weber problems with alternative transportation systems. Eur J Oper Res 97:87–93 CrossRefGoogle Scholar
  8. Dearing P, Francis RL, Lowe TJ (1976) Convex location problems on tree networks. Oper Res 24:628–642 CrossRefGoogle Scholar
  9. Görke R, Shin CS, Wolff A (2008) Constructing the city voronoi diagram faster. Int J Comput Geom Appl 18:275–294 CrossRefGoogle Scholar
  10. Hansen P, Peeters D, Richard D, Thisse JF (1985) The minisum and minimax location problems revisited. Oper Res 33:1251–1265 CrossRefGoogle Scholar
  11. Horst R, Thoai N (1999) DC programming: overview. J Optim Theory Appl 103:1–43 CrossRefGoogle Scholar
  12. Kirwan F (1992) Complex algebraic curves. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  13. Koolen A, Tamir A (1990) Covering problems. In: Mirchandani P, Francis R (eds) Discrete location theory. Wiley-Interscience, New York Google Scholar
  14. Körner MC, Schöbel A (2010) Weber problems with high–speed lines. TOP 18:223–241 CrossRefGoogle Scholar
  15. Laporte G, Mesa JA, Ortega FA, Sevillano I (2005) Maximizing trip coverage in the location of a single rapid transit alignment. Ann Oper Res 136:49–63 CrossRefGoogle Scholar
  16. Laporte G, Mesa JA, Perea F (2010) A game theoretic framework for the robust railway transit network design problem. Transp Res, Part B 44:447–459 CrossRefGoogle Scholar
  17. Laporte G, Marín A, Mesa JA, Perea F (2011) Designing robust rapid transit networks with alternative routes. J Adv Transp 45:54–65 CrossRefGoogle Scholar
  18. Márquez-Diez-Canedo J (1987) Fundamentos de Teoría de Optimización. Limusa, México Google Scholar
  19. Ortúzar JD, Willumsen LG (2001) Modelling transport. Wiley, New York Google Scholar
  20. Pfeiffer B, Klamroth K (2008) Unified model for weber problems with continuous and network distances. Comput Oper Res 35:312–326 CrossRefGoogle Scholar
  21. Plastria F (1992) GBSSS: the generalized big square small square method for planar single-facility location. Eur J Oper Res 62:163–174 CrossRefGoogle Scholar
  22. Plastria F (2002) Continuous covering location problems. In: Drezner Z, Hamacher H (eds) Facility location: applications and theory. Springer, Berlin Google Scholar
  23. Preparata F, Shamos M (1985) Computational geometry, an introduction. Springer, Berlin CrossRefGoogle Scholar
  24. Schöbel A, Scholz D (2010) The big cube small cube solution method for multidimensional facility location problems. Comput Oper Res 37:115–122 CrossRefGoogle Scholar
  25. Scholz D (2010) Geometric branch & bound methods in global optimization: theory and applications to facility location problems. Ph.D. thesis, Universität Göttingen. To appear at Springer Google Scholar
  26. Scholz D, Schöbel A (2010) The theoretical and empirical rate of convergence for geometric branch-and-bound methods. J Glob Optim 48(3):473–495 CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2012

Authors and Affiliations

  • Mark-Christoph Körner
    • 1
  • Juan A. Mesa
    • 2
  • Federico Perea
    • 3
  • Anita Schöbel
    • 1
  • Daniel Scholz
    • 1
  1. 1.Institut für Numerische und Angewandte MathematikUniversität GöttingenGöttingenGermany
  2. 2.Departmento de Matemática Aplicada IIUniversidad de SevillaSevillaSpain
  3. 3.Departmento de Estadística e Investigación Operativa Aplicadas y CalidadUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations