TOP

, Volume 22, Issue 1, pp 185–207 | Cite as

Locating an axis-parallel rectangle on a Manhattan plane

  • Jack Brimberg
  • Henrik Juel
  • Mark-Christoph Körner
  • Anita Schöbel
Original Paper

Abstract

In this paper we consider the problem of locating an axis-parallel rectangle in the plane such that the sum of distances between the rectangle and a finite point set is minimized, where the distance is measured by the Manhattan norm 1. In this way we solve an extension of the Weber problem to extensive facility location. As a model, our problem is appropriate for position sensing of rectangular objects.

Keywords

Weber problem Minisum Dimensional facility Polyhedral norms 

Mathematics Subject Classification (2000)

90B85 97N50 65D10 90C26 

Notes

Acknowledgements

We wish to thank two anonymous referees for their helpful comments. An improved complexity bound on the algorithms given is due to a suggestion by Professor Arie Tamir, and we are also very thankful for that.

References

  1. Bauer FL, Stoer J, Witzgall C (1961) Absolute and monotonic norms. Numer Math 3:257–264 CrossRefGoogle Scholar
  2. Bern M, Goldberg D (2002) Paper position sensing. In: SCG’02: proceedings of the eighteenth annual symposium on computational geometry, pp 74–81 CrossRefGoogle Scholar
  3. Brimberg J, Juel H, Körner M, Schöbel A (2011) Locating a general minisum circle on the plane. 4OR. doi: 10.1007/s10288-011-0169-5 Google Scholar
  4. Brimberg J, Juel H, Schöbel A (2002) Linear facility location in three dimensions: Models and solution methods. Oper Res 50:1050–1057 CrossRefGoogle Scholar
  5. Brimberg J, Juel H, Schöbel A (2003) Properties of 3-dimensional line location models. Ann Oper Res 122:71–85 CrossRefGoogle Scholar
  6. Brimberg J, Juel H, Schöbel A (2007) Locating a circle on a sphere. Oper Res 55:782–791 CrossRefGoogle Scholar
  7. Brimberg J, Juel H, Schöbel A (2009) Locating a minisum circle in the plane. Discrete Appl Math 157:901–912 CrossRefGoogle Scholar
  8. Brimberg J, Wesolowsky G (2000) Note: facility location with closest rectangular distances. Nav Res Logist 47:77–84 CrossRefGoogle Scholar
  9. Brimberg J, Wesolowsky G (2002) Minisum location with closest Euclidean distances. Ann Oper Res 111:151–165 CrossRefGoogle Scholar
  10. Díaz-Báñez JM, Mesa JA, Schöbel A (2004) Continuous location of dimensional structures. Eur J Oper Res 152(1):22–44 CrossRefGoogle Scholar
  11. Drezner Z, Klamroth K, Schöbel A, Wesolowsky G (2002) The Weber problem. In: Drezner Z, Hamacher H (eds) Facility location: applications and theory. Springer, Berlin, pp 1–36 CrossRefGoogle Scholar
  12. Drezner Z, Steiner G, Wesolowsky G (2002) On the circle closest to a set of points. Comput Oper Res 29:637–650 CrossRefGoogle Scholar
  13. Gluchshenko O, Hamacher H, Tamir A (2009) An optimal O(nlogn) algorithm for finding an enclosing planar annulus of minimum width. Oper Res Lett 37:168–170 CrossRefGoogle Scholar
  14. Grimson W (1991) Object recognition by computer. The MIT Press, Cambridge Google Scholar
  15. Hassin R, Tamir A (1991) Improved complexity bounds for location problems on the real line. Oper Res Lett 10:395–402 CrossRefGoogle Scholar
  16. Korneenko N, Martini H (1990) Approximating finite weighted point sets by hyperplanes. In: SWAT’90: proceedings of the 2nd Scandinavian workshop on algorithm theory, pp 276–286 Google Scholar
  17. Korneenko N, Martini H (1993) Hyperplane approximation and related topics. In: Pach J (ed) New trends in discrete and computational geometry. Springer, Berlin, pp 135–162 CrossRefGoogle Scholar
  18. Körner M (2011) Minisum hyperspheres. Springer, Berlin CrossRefGoogle Scholar
  19. Körner M, Brimberg J, Juel H, Schöbel A (2009) General minisum circle location. In: Proceedings of the 21th Canadian conference on computational geometry, pp 111–114 Google Scholar
  20. Körner M, Brimberg J, Juel H, Schöbel A (2011) Geometric fit of a point set by generalized circles. J Glob Optim 51:115–132 CrossRefGoogle Scholar
  21. Love R, Morris J, Wesolowsky G (1988) Facilities location—models & methods. North-Holland, Amsterdam Google Scholar
  22. Martini H, Schöbel A (1998) Median hyperplanes in normed spaces—a survey. Discrete Appl Math 89:181–193 CrossRefGoogle Scholar
  23. Martini H, Schöbel A (1999) Two characterizations of smooth norms. Geom Dedic 77:173–183 CrossRefGoogle Scholar
  24. Martini H, Schöbel A (2001) Median and center hyperplanes in Minkowski spaces—a unified approach. Discrete Math 241:407–426 CrossRefGoogle Scholar
  25. Plastria F, Carrizosa E (2001) Gauge distances and median hyperplanes. J Optim Theory Appl 110:173–182 CrossRefGoogle Scholar
  26. Schöbel A (1999) Locating lines and hyperplanes: theory and algorithms. Kluwer Academic, Dordrecht CrossRefGoogle Scholar
  27. Schöbel A (2003) Anchored hyperplane location problems. Discrete Comput Geom 29(2):229–238 CrossRefGoogle Scholar
  28. Schöbel A, Scholz D (2010) The big cube small cube solution method for multidimensional facility location problems. Comput Oper Res 37:115–122 CrossRefGoogle Scholar
  29. Wallack A, Canny J, Manocha D (1993) Object localization using crossbeam sensing. In: IEEE international conference on robotics and automation Google Scholar
  30. Weber A (1909) Über den Standort der Industrien. Tübingen (in German) Google Scholar
  31. Wesolowsky G (1975) Location of the median line for weighted points. Environ Plan A 7:163–170 CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2012

Authors and Affiliations

  • Jack Brimberg
    • 1
  • Henrik Juel
    • 2
  • Mark-Christoph Körner
    • 3
  • Anita Schöbel
    • 3
  1. 1.Royal Military CollegeCanada and Groupe d’Études et de Recherche en Analyse des DécisionsKingstonCanada
  2. 2.Technical University of DenmarkLyngbyDenmark
  3. 3.Georg-August-Universität GöttingenGöttingenGermany

Personalised recommendations