TOP

, Volume 20, Issue 1, pp 190–214 | Cite as

Optimizing radial basis functions by d.c. programming and its use in direct search for global derivative-free optimization

Original Paper

Abstract

In this paper, we address the global optimization of functions subject to bound and linear constraints without using derivatives of the objective function. We investigate the use of derivative-free models based on radial basis functions (RBFs) in the search step of direct-search methods of directional type. We also study the application of algorithms based on difference of convex (d.c.) functions programming to solve the resulting subproblems which consist of the minimization of the RBF models subject to simple bounds on the variables. Extensive numerical results are reported with a test set of bound and linearly constrained problems.

Keywords

Global optimization Derivative-free optimization Direct-search methods Search step Radial basis functions d.c. programming DCA 

Mathematics Subject Classification (2000)

90C26 90C30 90C56 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Glob Optim 31:635–672 CrossRefGoogle Scholar
  2. Le Thi HA, Pham Dinh T (1997) Convex analysis approach to d.c. programming: theory, algorithms and applications. Acta Math Vietnam 22:289–355 Google Scholar
  3. Le Thi HA, Pham Dinh T (1998) D.C. optimization algorithms for solving the trust-region subproblem. SIAM J Optim 8:476–505 CrossRefGoogle Scholar
  4. Le Thi HA, Pham Dinh T (2005) The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann Oper Res 133:23–46 CrossRefGoogle Scholar
  5. Björkman M, Holmström K (2000) Global optimization of costly nonconvex functions using radial basis functions. Optim Eng 1:373–397 CrossRefGoogle Scholar
  6. Conn AR, Scheinberg K, Vicente LN (2009) Introduction to derivative-free optimization. MPS-SIAM series on optimization. SIAM, Philadelphia CrossRefGoogle Scholar
  7. Dolan ED, Moré JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91:201–213 CrossRefGoogle Scholar
  8. Fourer R, Gay DM, Kernighan BW (1990) A modeling language for mathematical programming. Manag Sci 36:519–554 CrossRefGoogle Scholar
  9. Griffin JD, Kolda TG (2010) Asynchronous parallel hybrid optimization combining DIRECT and GSS. Optim Methods Softw 25:797–817 CrossRefGoogle Scholar
  10. Gutmann H-M (2001) A radial basis function method for global optimization. J Glob Optim 19:201–227 CrossRefGoogle Scholar
  11. Hedar A-R, Fukushima M (2004) Heuristic pattern search and its hybridization with simulated annealing for nonlinear global optimization. Optim Methods Softw 19:291–308 CrossRefGoogle Scholar
  12. Ingber L, Rosen B (1992) Genetic algorithms and very fast simulated reannealing: a comparison. Math Comput Model 16:87–100 CrossRefGoogle Scholar
  13. Ji Y, Zhang K-C, Qu S-J (2006) A deterministic global optimization algorithm. Appl Math Comput 185:382–387 CrossRefGoogle Scholar
  14. Jones D, Perttunen C, Stuckman B (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theory Appl 79:157–181 CrossRefGoogle Scholar
  15. Käck J-E (2004) Constrained global optimization with radial basis functions. Technical report research report MdH-IMa-2004, Department of Mathematics and Physics, Mälardalen University, Västerås, Sweden Google Scholar
  16. Kiseleva E, Stepanchuk T (2003) On the efficiency of a global non-differentiable optimization algorithm based on the method of optimal set partitioning. J Glob Optim 25:209–235 CrossRefGoogle Scholar
  17. Kolda TG, Lewis RM, Torczon V (2003) Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev 45:385–482 CrossRefGoogle Scholar
  18. Locatelli M (2003) A note on the Griewank test function. J Glob Optim 25:169–174 CrossRefGoogle Scholar
  19. Locatelli M, Schoen F (2002) Fast global optimization of difficult Lennard–Jones clusters. Comput Optim Appl 21:55–70 CrossRefGoogle Scholar
  20. Michalewicz Z (1994) Evolutionary computation techniques for nonlinear programming problems. Int Trans Oper Res 1:223–240 CrossRefGoogle Scholar
  21. Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, Berlin Google Scholar
  22. Mongeau M, Karsenty H, Rouzé V, Hiriart-Urruty J-B (2000) Comparison of public-domain software for black box global optimization. Optim Methods Softw 13:203–226 CrossRefGoogle Scholar
  23. Moré JJ, Wild SM (2009) Benchmarking derivative-free optimization algorithms. SIAM J Optim 20:172–191. www.mcs.anl.gov/~more/dfo CrossRefGoogle Scholar
  24. Oeuvray R (2005) Trust-region methods based on radial basis functions with application to biomedical imaging. PhD thesis, Institut de Mathématiques, École Polytechnique Fédérale de Lausanne, Switzerland Google Scholar
  25. Oeuvray R, Bierlaire M (2009) BOOSTERS: a derivative-free algorithm based on radial basis functions. Int J Model Simul 29:4634–4636 Google Scholar
  26. Parsopoulos KE, Plagianakos VP, Magoulas GD, Vrahatis MN (2001) Stretching technique for obtaining global minimizers through particle swarm optimization. In: Proc of the particle swarm optimization workshop, Indianapolis, USA, pp 22–29 Google Scholar
  27. Pham Dinh T, Elbernoussi S (1988) Duality in d.c. (difference of convex functions) optimization. In: Subgradient methods, vol 84. Birkhäuser, Basel, pp 276–294 Google Scholar
  28. Regis RG, Shoemaker CA (2005) Constrained global optimization of expensive black box functions using radial basis functions. J Glob Optim 31:153–171 CrossRefGoogle Scholar
  29. Regis RG, Shoemaker CA (2007a) Improved strategies for radial basis function methods for global optimization. J Glob Optim 37:113–135 CrossRefGoogle Scholar
  30. Regis RG, Shoemaker CA (2007b) Parallel radial basis function methods for the global optimization of expensive functions. Eur J Oper Res 182:514–535 CrossRefGoogle Scholar
  31. Regis RG, Shoemaker CA (2007c) A stochastic radial basis function method for the global optimization of expensive functions. INFORMS J Comput 19:497–509 CrossRefGoogle Scholar
  32. Runarsson TP, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4:284–294 CrossRefGoogle Scholar
  33. Vaz AIF, Vicente LN (2007) A particle swarm pattern search method for bound constrained global optimization. J Glob Optim 39:197–219 CrossRefGoogle Scholar
  34. Vaz AIF, Vicente LN (2009) Pswarm: a hybrid solver for linearly constrained global derivative-free optimization. Optim Methods Softw 24:669–685 CrossRefGoogle Scholar
  35. Wild SM, Shoemaker CA (2011) Global convergence of radial basis function trust region derivative-free algorithms. SIAM J Optim. doi:10.1137/09074927x
  36. Wild SM, Regis RG, Shoemaker CA (2008) ORBIT: optimization by radial basis function interpolation in trust-regions. SIAM J Sci Comput 30:3197–3219 CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2011

Authors and Affiliations

  1. 1.Laboratory of Theoretical and Applied Computer Science (LITA EA 3097)Paul Verlaine UniversityMetzFrance
  2. 2.Department of Production and SystemsUniversity of MinhoBragaPortugal
  3. 3.CMUC, Department of MathematicsUniversity of CoimbraCoimbraPortugal

Personalised recommendations