Advertisement

TOP

, Volume 20, Issue 1, pp 130–153 | Cite as

Biased random-key genetic algorithms with applications in telecommunications

  • Mauricio G. C. Resende
Original Paper

Abstract

This paper surveys several applications of biased random-key genetic algorithms (BRKGA) in optimization problems that arise in telecommunications. We first review the basic concepts of BRKGA. This is followed by a description of BRKGA-based heuristics for routing in IP networks, design of survivable IP networks, redundant server location for content distribution, regenerator location in optical networks, and routing and wavelength assignment in optical networks.

Keywords

Optimization in telecommunications Genetic algorithm Biased random-key genetic algorithm Random keys Combinatorial optimization Heuristics Metaheuristics 

Mathematics Subject Classification (2000)

90C27 90C35 90C59 90C90 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrade DV, Buriol LS, Resende MGC, Thorup M (2006) Survivable composite-link IP network design with OSPF routing. In: Proceedings of the eighth INFORMS telecommunications conference Google Scholar
  2. Bannerjee D, Mukherjee B (1995) Practical approach for routing and wavelength assignment in large wavelength routed optical networks. IEEE J Sel Areas Commun 14:903–908 CrossRefGoogle Scholar
  3. Bean JC (1994) Genetic algorithms and random keys for sequencing and optimization. ORSA J Comput 6:154–160 CrossRefGoogle Scholar
  4. Breslau L, Diakonikolas I, Duffield N, Gu Y, Hajiaghayi M, Johnson DS, Resende MGC, Sen S (2011) Disjoint-path facility location: theory and practice. In: ALENEX 2011: workshop on algorithm engineering and experiments, January 2011 Google Scholar
  5. Buriol LS, Resende MGC, Ribeiro CC, Thorup M (2002) A memetic algorithm for OSPF routing. In: Proceedings of the 6th INFORMS telecom, Citeseer, pp 187–188 Google Scholar
  6. Buriol LS, Resende MGC, Ribeiro CC, Thorup M (2005) A hybrid genetic algorithm for the weight setting problem in OSPF/IS-IS routing. Networks 46:36–56 CrossRefGoogle Scholar
  7. Buriol LS, Resende MGC, Thorup M (2007) Survivable IP network design with OSPF routing. Networks 49:51–64 CrossRefGoogle Scholar
  8. Buriol LS, Hirsch MJ, Querido T, Pardalos PM, Resende MGC, Ritt M (2010) A biased random-key genetic algorithm for road congestion minimization. Optim Lett 4:619–633 CrossRefGoogle Scholar
  9. Chen S, Ljubić I, Raghavan S (2010) The regenerator location problem. Networks 55:205–220 Google Scholar
  10. Dijkstra E (1959) A note on two problems in connection of graphs. Numer Math 1:269–271 CrossRefGoogle Scholar
  11. Duarte A, Martí R, Resende MGC, Silva RMA (2010) Randomized heuristics for the regenerator location problem. Technical report, AT&T Labs Research, Florham Park, New Jersey. URL http://www.research.att.com/~mgcr/doc/gpr-regenloc.pdf
  12. Ericsson M, Resende MGC, Pardalos PM (2002) A genetic algorithm for the weight setting problem in OSPF routing. J Comb Optim 6:299–333 CrossRefGoogle Scholar
  13. Flammini M, Machetti A, Monaco G, Moscardelli L, Zaks S (2009) On the complexity of the regenerator placement problem in optical networks. In: Proceedings of SPAA, Calgary, pp 154–162 Google Scholar
  14. Fontes DBMM, Gonçalves JF (2007) Heuristic solutions for general concave minimum cost network flow problems. Networks 50:67–76 CrossRefGoogle Scholar
  15. Fortz B, Thorup M (2004) Increasing Internet capacity using local search. Comput Optim Appl 29:13–48. Preliminary short version of this paper published as “Internet traffic engineering by optimizing OSPF weights.” In Proc IEEE INFOCOM 2000—the conference on computer communications CrossRefGoogle Scholar
  16. Gendreau M, Potvin J-Y (eds) (2010) Handbook of metaheuristics, 2nd edn. International series in operations research & management science, vol 146. Springer, Berlin Google Scholar
  17. Glover F, Kochenberger G (eds) (2003) Handbook of metaheuristics. Kluwer Academic, Dordrecht Google Scholar
  18. Gonçalves JF (2007) A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal packing problem. Eur J Oper Res 183:1212–1229 CrossRefGoogle Scholar
  19. Gonçalves JF, Almeida J (2002) A hybrid genetic algorithm for assembly line balancing. J Heuristics 8:629–642 CrossRefGoogle Scholar
  20. Gonçalves JF, Beirão NC (1999) Um algoritmo genético baseado em chaves aleatórias para sequenciamento de operações. Rev Assoc Port Desenvolv Investig Oper 19:123–137 Google Scholar
  21. Gonçalves JF, Resende MGC (2004) An evolutionary algorithm for manufacturing cell formation. Comput Ind Eng 47:247–273 CrossRefGoogle Scholar
  22. Gonçalves JF, Resende MGC (2010a) A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem. Technical report, AT&T Labs Research, Florham Park, NJ 07733 USA. J Comb Optim. doi: 10.1007/s10878-009-9282-1
  23. Gonçalves JF, Resende MGC (2010b) Biased random-key genetic algorithms for combinatorial optimization. J Heuristics. doi: 10.1007/s10732-010-9143-1 Google Scholar
  24. Gonçalves JF, Resende MGC (2010c) A parallel multi-population biased random-key genetic algorithm for a container loading problem. Technical report, AT&T Labs Research, URL http://www.research.att.com/~mgcr/doc/brkga-pack3d.pdf
  25. Gonçalves JF, Mendes JJM, Resende MGC (2005) A hybrid genetic algorithm for the job shop scheduling problem. Eur J Oper Res 167:77–95 CrossRefGoogle Scholar
  26. Gonçalves JF, Mendes JJM, Resende MGC (2008) A genetic algorithm for the resource constrained multi-project scheduling problem. Eur J Oper Res 189:1171–1190 CrossRefGoogle Scholar
  27. Gonçalves JF, Resende MGC, Mendes JJM (2010) A biased random-key genetic algorithm with forward-backward improvement for the resource constrained project scheduling problem. J Heuristics. doi: 10.1007/s10732-010-9142-2
  28. Mendes JJM, Gonçalves JF, Resende MGC (2009) A random key based genetic algorithm for the resource constrained project scheduling problem. Comput Oper Res 36:92–109 CrossRefGoogle Scholar
  29. Noronha TF, Ribeiro CC (2006) Routing and wavelength assignment by partition coloring. Eur J Oper Res 171:797–810 CrossRefGoogle Scholar
  30. Noronha TF, Resende MGC, Ribeiro CC (2010) A biased random-key genetic algorithm for routing and wavelength assignment. J Glob Optim. doi: 10.1007/s10898-010-9608-7 Google Scholar
  31. Reis R, Ritt M, Buriol LS, Resende MGC (2010) A biased random-key genetic algorithm for OSPF and DEFT routing to minimize network congestion. Int Trans Oper Res. doi: 10.1111/j.1475-3995.2010.00771.x Google Scholar
  32. Resende MGC, Pardalos PM (eds) (2006) Handbook of optimization in telecommunications. Springer, Berlin Google Scholar
  33. Resende MGC, Toso RF, Gonçalves JF, Silva RMA (2011) A biased random-key genetic algorithm for the Steiner triple covering problem. Optim Lett. doi: 10.1007/s11590-011-0285-3
  34. Skorin-Kapov N (2007) Routing and wavelength assignment in optical networks using bin packing based algorithms. Eur J Oper Res 177:1167–1179 CrossRefGoogle Scholar
  35. Spears WM, DeJong KA (1991) On the virtues of parameterized uniform crossover. In: Proceedings of the fourth international conference on genetic algorithms, pp 230–236 Google Scholar
  36. Valente JMS, Gonçalves JF (2008) A genetic algorithm approach for the single machine scheduling problem with linear earliness and quadratic tardiness penalties. Comput Oper Res 35:3696–3713 CrossRefGoogle Scholar
  37. Valente JMS, Gonçalves JF, Alves RAFS (2006) A hybrid genetic algorithm for the early/tardy scheduling problem. Asia-Pac J Oper Res 23:393–405 CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2011

Authors and Affiliations

  1. 1.Algorithms and Optimization Research DepartmentAT&T Labs ResearchFlorham ParkUSA

Personalised recommendations