Advertisement

TOP

, Volume 21, Issue 1, pp 189–205 | Cite as

Analysis of the core of multisided Böhm-Bawerk assignment markets

  • Oriol TejadaEmail author
Original Paper

Abstract

We introduce the class of multisided Böhm-Bawerk assignment games which generalizes the well-known two-sided Böhm-Bawerk assignment games to markets with an arbitrary number of sectors. We reach the core and the corresponding extreme allocations of any multisided Böhm-Bawerk assignment game by means of an associated convex game defined on the set of sectors instead of the set of sellers and buyers. We also study when the core of a multisided Böhm-Bawerk assignment game is stable in the sense of von Neumann–Morgenstern.

Keywords

Assignment games Multisided markets Homogeneous goods Core Extreme points 

Mathematics Subject Classification (2000)

91A12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brânzei R, Solymosi T, Tijs S (2007) Type monotonic allocation schemes for a class of market games. Top 15:78–88 CrossRefGoogle Scholar
  2. Hamers H, Klijn F, Solymosi T, Tijs S, Villar JP (2002) Assignment games satisfy the CoMa-property. Games Econ Behav 38(2):231–239 CrossRefGoogle Scholar
  3. Ichiishi T (1981) Super-modularity: applications to convex games and the greedy algorithm for LP. J Econ Theory 25:283–286 CrossRefGoogle Scholar
  4. Lucas WF (1995) Core theory for multiple-sided assignment games. Duke Math J 81(1):55–65 CrossRefGoogle Scholar
  5. Moulin H (1995) Cooperative microeconomics: a game-theoretic introduction. Prentice Hall/Harvester Wheatsheaf, New York Google Scholar
  6. Muto S (1983) Sequential auctions on Böhm-Bawerk’s horse market. Math Soc Sci 4(2):117–130 CrossRefGoogle Scholar
  7. Núñez M, Rafels C (2005) The Böhm-Bawerk horse market: a cooperative analysis. Int J Game Theory 33(1):421–430 CrossRefGoogle Scholar
  8. Quint T (1991) The core of an m-sided assignment game. Games Econ Behav 3:487–503 CrossRefGoogle Scholar
  9. Schotter A (1974) Auctioning Böhm-Bawerk’s horses. Int J Game Theory 3:195–215 CrossRefGoogle Scholar
  10. Shapley LS (1972) Cores of convex games. Int J Game Theory 1:11–26 CrossRefGoogle Scholar
  11. Shapley LS, Shubik M (1972) The assignment game I: the core. Int J Game Theory 1:111–130 CrossRefGoogle Scholar
  12. Sherstyuk K (1998) Efficiency in partnership structures. J Econ Behav Organ 36:331–346 CrossRefGoogle Scholar
  13. Sherstyuk K (1999) Multisided matching games with complementarities. Int J Game Theory 28(4):489–509 CrossRefGoogle Scholar
  14. Solymosi T, Raghavan TES (2001) Assignment games with stable core. Int J Game Theory 30:177–185 CrossRefGoogle Scholar
  15. Stuart HW Jr (1997) The supplier-firm-buyer game and its m-sided generalization. Math Soc Sci 34:21–27 CrossRefGoogle Scholar
  16. Tejada O (2010a) Multi-sided Böhm-Bawerk assignment markets: the core. Documents de Treball de la Facultat d’Economia i Empresa, E10/238 Google Scholar
  17. Tejada O (2010b) A note on competitive prices in multilateral assignment markets. Econ Bull 30(1):658–662 Google Scholar
  18. Tejada O, Rafels C (2010) Symmetrically multilateral-bargained allocations in multi-sided assignment markets. Int J Game Theory 39(1):249–258 CrossRefGoogle Scholar
  19. Von Böhm-Bawerk E (1923) Positive theory of capital (translated by W Smart), GE Steckert, New York (original publication 1891) Google Scholar
  20. Von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton Google Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2011

Authors and Affiliations

  1. 1.Department of Actuarial, Financial and Economic MathematicsUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations