Advertisement

TOP

, Volume 20, Issue 3, pp 679–706 | Cite as

A GRASP heuristic for the manufacturing cell formation problem

  • Juan A. Díaz
  • Dolores LunaEmail author
  • Ricardo Luna
Original Paper

Abstract

In this work, we address the Manufacturing Cell Formation Problem (MCFP). Cellular Manufacturing is a production strategy that has emerged to reduce materials handling and set up times in order to reduce lead times in production systems and to improve customer’s service levels while reducing costs. We propose a GRASP heuristic to obtain lower bounds for the optimal solution of the problem. To evaluate the performance of the proposed method, we test the heuristic with different instances from the literature and compare the results obtained with those provided by other heuristic methods from the literature. According to the obtained results, the proposed GRASP procedure provides good quality lower bounds with reasonable computational effort.

Keywords

Group technology Manufacturing cell formation Metaheuristics 

Mathematics Subject Classification (2000)

90C59 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adenso-Díaz B, Lozano S, Eguía I (2005) Part-machine grouping using weighted similarity coefficients. Comput Ind Eng 48:553–570 CrossRefGoogle Scholar
  2. Adil GK, Ghosh JB (2005) Forming GT cells incrementally using GRASP. Int J Adv Manuf Technol 26(11):1402–1408 CrossRefGoogle Scholar
  3. Adil GK, Rajamani D, Strong D (1997) Assignment allocation and simulated annealing algorithms for cell formation. IIE Trans 29:53–67 CrossRefGoogle Scholar
  4. Askin RG, Subramanian S (1987) A cost based heuristic for group technology configuration. Int J Prod Res 25:101–113 CrossRefGoogle Scholar
  5. Boctor F (1991) A linear formulation of the machine-part cell formation problem. Int J Prod Res 29(2):343–356 CrossRefGoogle Scholar
  6. Boe W, Cheng CH (1991) A close neighbor algorithm for designing cellular manufacturing systems. Int J Prod Res 29(10):2097–2116 CrossRefGoogle Scholar
  7. Carrie S (1973) Numerical taxonomy applied to group technology and plant layout. Int J Prod Res 11:399–416 CrossRefGoogle Scholar
  8. Chan HM, Milner DA (1982) Direct clustering algorithm for group formation in cellular manufacture. J Manuf Syst 1:65–75 CrossRefGoogle Scholar
  9. Chandrasekharan MP, Rajagopalan R (1986) An ideal seed non-hierarchical clustering algorithm for cellular manufacturing. Int J Prod Res 24(2):451–464 CrossRefGoogle Scholar
  10. Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Glob Optim 6:109–133 CrossRefGoogle Scholar
  11. Gonçalves JF, Resende MGC (2004) An evolutionary algorithm for manufacturing cell formation. Comput Ind Eng 47:247–273 CrossRefGoogle Scholar
  12. Gupta T, Seifoddini H (1990) Production data based similarity coefficient for machine-component grouping decisions in the design of a cellular manufacturing system. Int J Prod Res 28(7):1247–1269 CrossRefGoogle Scholar
  13. Khan M, Islam S, Sarker B (2000) A similarity coefficient measure and machine-parts grouping in cellular manufacturing systems. Int J Prod Res 38(3):699–720 CrossRefGoogle Scholar
  14. King JR (1980) Machine-components grouping in production flow analysis: an approach using a rank order clustering algorithm. Int J Prod Res 18(2):213–232 CrossRefGoogle Scholar
  15. King JR, Nakornchai V (1982) Machine-component group formation in group technology: review and extension. Int J Prod Res 20(2):117–133 CrossRefGoogle Scholar
  16. Kumar KR, Chandrasekhran MP (1990) A quantitative criterion for goodness of block diagonal forms of binary matrices in group technology. Int J Prod Res 28(2):233–234 CrossRefGoogle Scholar
  17. Kumar KR, Vannelli A (1987) Strategic subcontracting for efficient disaggregated manufacturing. Int J Prod Res 25(12):1715–1728 Google Scholar
  18. Kumar KR, Kusiak A, Vannelli A (1986) Grouping of parts and components in flexible manufacturing systems. Eur J Oper Res 24:387–397 CrossRefGoogle Scholar
  19. Kusiak A (1987) The generalized group technology concept. Int J Prod Res 25:561–569 CrossRefGoogle Scholar
  20. Kusiak A, Cho M (1992) Similarity coefficient algorithm for solving the group technology problem. Int J Prod Res 30(11):2633–2646 CrossRefGoogle Scholar
  21. Kusiak A, Chow W (1987) Efficient solving of the group technology problem. J Manuf Syst 6(2):117–124 CrossRefGoogle Scholar
  22. Lee H, García-Díaz A (1993) A network flow approach to solve clustering problems in group technology. Int J Prod Res 31(3):603–612 CrossRefGoogle Scholar
  23. McAuley J (1972) Machine grouping for efficient production. Prod Eng 51:53–57 CrossRefGoogle Scholar
  24. McCormick WT, Schweitzer PJ, White TW (1972) Problem decomposition and data reorganization by a clustering technique. Oper Res 20:993–1009 CrossRefGoogle Scholar
  25. Mosier CT (1986) An experiment investigating the application of clustering procedures and similarity coefficients to the GT machine-cell formation problem. Int J Prod Res 27:1811–1836 CrossRefGoogle Scholar
  26. Mosier CT, Taube L (1985a) The facets of group technology and their impact on implementation. Omega 13(6):381–391 CrossRefGoogle Scholar
  27. Mosier CT, Taube L (1985b) Weigthed similarity measure heuristics for the group technology machine clustering problem. Omega 13(6):577–583 CrossRefGoogle Scholar
  28. Sarker BR (2001) Measures of grouping efficiency in cellular manufacturing systems. Eur J Oper Res 130:588–611 CrossRefGoogle Scholar
  29. Sarker BR, Mondal S (1999) Grouping efficiency measures in cellular manufacturing: a survey and critical review. Int J Prod Res 37(2):285–314 CrossRefGoogle Scholar
  30. Seifoddini H (1989) Single linkage versus average linkage clustering in machine cells formation applications. Comput Ind Eng 16(3):419–426 CrossRefGoogle Scholar
  31. Seifoddini H, Wolfe PM (1986) Applications of the similarity coefficient method in group technology. IIE Trans 18(3):266–270 CrossRefGoogle Scholar
  32. Srinivasan G, Narendran TT (1991) GRAFICS-A non hierarchical clustering-algorithm for group technology. Int J Prod Res 29(3):463–468 CrossRefGoogle Scholar
  33. Srinivasan G, Narendran TT, Mahadevan B (1990) An assignment model for the part-families problem in group technology. Int J Prod Res 28:145–152 CrossRefGoogle Scholar
  34. Stanfel L (1985) Machine clustering for economic production. Eng Costs Prod Econ 9:73–78 CrossRefGoogle Scholar
  35. Waghodekar PH, Sahu S (1984) Machine-component cell formation in group technology MACE. Int J Prod Res 22:937–948 CrossRefGoogle Scholar
  36. Wu TH, Chang CC, Yeh JY (2009) A hybrid heuristic algorithm adopting both Boltzmann function and mutation operator for manufacturing cell formation problems. Int J Prod Econ 120:669–688 CrossRefGoogle Scholar
  37. Yasuda K, Yin Y (2001) A dissimilarity measure for solving the cell formation problem in cellular manufacturing. Comput Ind Eng 39(12):1–17 CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2010

Authors and Affiliations

  1. 1.Dpt. Ingeniería Industrial y MecánicaUniversidad de las AméricasPueblaMéxico

Personalised recommendations