, Volume 19, Issue 2, pp 421–447 | Cite as

On the Ferrers property of valued interval orders

  • Susana Díaz
  • Bernard De Baets
  • Susana Montes
Original Paper


We study the relationship between the Ferrers property and the notion of interval order in the context of valued relations. Given a crisp preference structure without incomparability, the strict preference relation satisfies the Ferrers property if and only if the associated weak preference relation does. These conditions characterize a total interval order. For valued relations the Ferrers property can be written in two different and non-equivalent ways. In this work, we compare these properties by finding the kind of completeness they imply. Moreover, we study whether they still characterize a valued total interval orders.


Total interval order Partial interval order Ferrers property Valued relation Completeness 

Mathematics Subject Classification (2000)

62C99 91B08 04A72 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bilgiç T (1998) Interval-valued preference structures. Eur J Oper Res 105:162–183 CrossRefGoogle Scholar
  2. De Baets B, Fodor J (1997) Twenty years of fuzzy preference structures (1978–1997). JORBEL 37:61–82 Google Scholar
  3. De Baets B, Fodor J (2003) Additive fuzzy preference structures: the next generation. In: De Baets B, Fodor J (eds) Principles of fuzzy preference modelling and decision making. Academia Press, Prague, pp 15–25 Google Scholar
  4. De Baets B, Van de Walle B (1996) Weak and strong fuzzy interval orders. Fuzzy Sets Syst 79:213–225 CrossRefGoogle Scholar
  5. De Baets B, Van de Walle B, Kerre E (1995) Fuzzy preference structures without incomparability. Fuzzy Sets Syst 76:333–348 CrossRefGoogle Scholar
  6. Díaz S, De Baets B, Montes S (2007a) Additive decomposition of fuzzy pre-orders. Fuzzy Sets Syst 158:830–842 CrossRefGoogle Scholar
  7. Díaz S, Montes S, De Baets B (2007b) Transitivity bounds in additive fuzzy preference structures. IEEE Trans Fuzzy Syst 15(2):275–286 CrossRefGoogle Scholar
  8. Doignon J-P, Mitas J (2000) Dimension of valued relations. Eur J Oper Res 125:571–587 CrossRefGoogle Scholar
  9. Doignon J-P, Ducamp A, Falmagne J-C (1984) On realizable biorders and the biorder dimension of a relation. J Math Psychol 28:73–109 CrossRefGoogle Scholar
  10. Doignon J-P, Montjardet B, Roubens M, Vincke Ph (1986) Biorder families, valued relations, and preference modelling. J Math Psychol 30:435–480 CrossRefGoogle Scholar
  11. Ducamp A, Falmagne J-C (1969) Composite measurement. J Math Psychol 6:359–390 CrossRefGoogle Scholar
  12. Fernández E, Navarro J, Duarte A (2008) Multicriteria sorting using a valued preference closeness relation. Eur J Oper Res 185:673–686 CrossRefGoogle Scholar
  13. Fernández E, Navarro J, Bernal S (2009) Multicriteria sorting using a valued indifference relation under a preference disaggregation paradigm. Eur J Oper Res 198(2):602–609 CrossRefGoogle Scholar
  14. Fernandez E, Bernal S, Navarro J, Olmedo R An outranking-based fuzzy logic model for collaborative group preferences. TOP, in press. doi: 10.1007/s11750-008-0072-1
  15. Fishburn PC (1973) Binary choice probabilities: On the varieties of stochastic transitivity. J Math Psychol 10:327–352 CrossRefGoogle Scholar
  16. Fodor J (1992) Traces of binary fuzzy relations. Fuzzy Sets Syst 50:331–341 CrossRefGoogle Scholar
  17. Fodor J (1995) Contrapositive symmetry of fuzzy implications. Fuzzy Sets Syst 69:141–156 CrossRefGoogle Scholar
  18. Fodor J, Roubens M (1994) Fuzzy preference modelling and multicriteria decision support. Kluwer Academic, Dordrecht Google Scholar
  19. Fodor J, Roubens M (1995) Structure of transitive valued binary relations. Math Soc Sci 30:71–94 CrossRefGoogle Scholar
  20. Gupta P, Mehlawat MK (2007) An algorithm for a fuzzy transportation problem to select a new type of coal for a steel manufacturing unit. TOP 15:114–137 CrossRefGoogle Scholar
  21. Herrero C, Martínez R (2008) Up methods in the allocation of indivisibilities when preferences are single-peaked. TOP 16(2):272–283 CrossRefGoogle Scholar
  22. Jenei S (2000) New family of triangular norms via contrapositive symmetrization of residuated implications. Fuzzy Sets Syst 110:157–174 CrossRefGoogle Scholar
  23. Klement EP, Mesiar R, Pap E (2000) Triangular norms. Kluwer Academic, Dordrecht Google Scholar
  24. Loomes G, Starmer C, Sudgen R (1991) Observing violations of transitivity by experimental methods. Econometrica 59(2):425–439 CrossRefGoogle Scholar
  25. Maes KC, De Baets B (2007) On the structure of left-continuous t-norms that have a continuous contour line. Fuzzy Sets Syst 158:843–860 CrossRefGoogle Scholar
  26. Maes KC, De Baets B (2009) Rotation-invariant t-norms: the rotation invariance property revisited. Fuzzy Sets Syst 160:44–51 CrossRefGoogle Scholar
  27. Menger K (1951) Probabilistic theories of relations. Proc Natl Acad Sci (Math) 37:178–180 CrossRefGoogle Scholar
  28. Monjardet B (1978) Axiomatiques et propriétés des quasi-ordres. Math Sci Hum 63:51–82 Google Scholar
  29. Montero J, Pearman AD, Tejada J (1995) Fuzzy multicriteria decision support for budget allocation in the transport sector. TOP 3:47–68 CrossRefGoogle Scholar
  30. Ovchinnikov S (1991) Similarity relations, fuzzy partitions, and fuzzy orderings. Fuzzy Sets Syst 40:107–126 CrossRefGoogle Scholar
  31. Roberts FS (1976) Discrete mathematical models. Prentice-Hall, New York Google Scholar
  32. Roubens M, Vincke Ph (1985) Preference modelling. In: Lecture notes in economics and mathematical systems, vol 250. Springer, Berlin Google Scholar
  33. Roy B (1985) Méthodologie multicritère d’aide à la décision. Economica, Paris Google Scholar
  34. Roy B, Vincke Ph (1987) Pseudo-orders: definition, properties and numerical representation. Math Soc Sci 14:263–274 CrossRefGoogle Scholar
  35. Tijs S, Brânzei R (2004) Various characterizations of convex fuzzy games. TOP 12:399–408 CrossRefGoogle Scholar
  36. Tversky A (1969) Intransitivity of preference. Psychol Rev 76(1):31–48 CrossRefGoogle Scholar
  37. Van De Walle B, De Baets B, Kerre E (1998) Characterizable fuzzy preference structures. Ann Oper Res 80:105–136 CrossRefGoogle Scholar
  38. Wang T-C, Chang T-H (2007) Application of consistent fuzzy preference relations in predicting the success of knowledge management implementation. Eur J Oper Res 182:1313–1329 CrossRefGoogle Scholar
  39. Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353 CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2010

Authors and Affiliations

  • Susana Díaz
    • 1
  • Bernard De Baets
    • 2
  • Susana Montes
    • 1
  1. 1.Dept. Statistics and O. R.University of OviedoOviedoSpain
  2. 2.Dept. of Appl. Math., Biometrics and Process ControlGhent UniversityGhentBelgium

Personalised recommendations