Advertisement

TOP

, 17:215 | Cite as

Optimization and data mining in medicine

  • Panos M. Pardalos
  • Vera Tomaino
  • Petros Xanthopoulos
Invited Paper

Abstract

Mathematical theory of optimization has found many applications in the area of medicine over the last few decades. Several data analysis and decision making problems in medicine can be formulated using optimization and data mining techniques. The significance of the mathematical models is greatly realized in the recent years owing to the growing technological capabilities and the large amounts of data available. In this paper, we attempt to give a brief overview of some of the most interesting applications of mathematical programming and data mining in medicine. In the overview, we include applications like radiation therapy treatment, microarray data analysis, and computational neuroscience.

Optimization Medicine Computational biology Computational neuroscience 

Mathematics Subject Classification (2000)

90-02 90C90 92B05 

References

  1. Abeyratne R, Kinouchi Y, Oki H, Okada J, Shichijo F, Matsumoto K (1991) Artificial neural networks for source localization in the human brain. Brain Topogr 4(1):3–21 CrossRefGoogle Scholar
  2. Aleman DM, Glaser D, Romeijn HE, Dempsey JF (2007) A primal-dual interior point algorithm for fluence map optimization in intensity modulated radiation therapy treatment planning. Technical report, Gainesville, Florida: Department of Industrial and Systems Engineering, University of Florida Google Scholar
  3. Aleman DM, Romeijin HE, Dempsey JF (2008) Beam orientation optimization methods in intensity modulated radiation therapy treatment planning. In: Optimization in medicine and biology. Auerbach Publications, pp 223–251 Google Scholar
  4. Alves CJS, Pardalos PM, Vicente LN (eds) (2008) Optimization in medicine. Springer optimization and its applications, vol 12. Springer, Berlin Google Scholar
  5. Bensmail H, Semmes OJ, Haoudi A (2007) Clustering proteomics data using Bayesian principal component analysis clustering proteomics data using Bayesian principal component analysis. In: Data mining in biomedicine. Springer optimization and its applications, vol 7. Springer, Berlin, pp 339–362 CrossRefGoogle Scholar
  6. Busygin S, Pardalos PM (2007) Exploring microarray data with correspondence analysis. In: Data mining in biomedicine. Springer optimization and its applications, vol 7. Springer, Berlin, pp 25–37 CrossRefGoogle Scholar
  7. Busygin S, Prokopyev OA, Pardalos PM (2005) Feature selection for consistent biclustering via fractional 0–1 programming. J Comb Optim 10:7–21 CrossRefGoogle Scholar
  8. Busygin S, Prokopyev O, Pardalos PM (2007) Biclustering in data mining. Comput Oper Res 35(9):2964–2987 CrossRefGoogle Scholar
  9. Chaovalitwongse W (2003) Optimization and dynamical approaches in nonlinear time series analysis with application in bioengineering. PhD thesis, University of Florida Google Scholar
  10. Cheng Y, Church GM (2000) Biclustering of expression data. In: Proceedings of the eighth international conference on intelligent system for molecular biology, pp 93–103 Google Scholar
  11. Dhillon IS (2001) Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, pp 269–274 Google Scholar
  12. Fan N, Boyko N, Pardalos PM (2010) Recent advances of data biclustering with application in computational neuroscience. Springer, Berlin (in press) Google Scholar
  13. Floudas C, Pardalos PM (eds) (2000) Optimization in computational chemistry and molecular biology. Kluwer Academic, Dordrecht Google Scholar
  14. Gorodnitsky IF, George JS, Rao BD (1995) Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalogr Clin Neurophysiol, pp 231–251 Google Scholar
  15. Intensity Modulated Radiation Therapy Collaborative Working Group (2001) Intensity modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51:880–914 Google Scholar
  16. Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, D’Asseler Y, Camilleri KP, Fabri SG, Van Huffel S, Lemahieu I (2007) Review on solving the forward problem in EEG source analysis. J NeuroEng Rehabil 4(46) Google Scholar
  17. Iasemidis LD (1990) On the dynamics of the human brain in temporal lobe epilepsy. PhD thesis, University of Michigan, Ann Arbor Google Scholar
  18. Jiang T, Li X, Kruggel F (2000) Global optimization approaches to MEG source localization. pp 223–230 Google Scholar
  19. Kalinowski T (2008) Multileaf collimator shape matrix decomposition. In: Optimization in medicine and biology. Auerbach Publications, pp 253–286 Google Scholar
  20. Kamath S, Sahni S, Palta J, Ranka S, Lim J (2009) Algorithms for sequencing multileaf collimator. In: Handbook of optimization in medicine. Springer optimization and its applications, vol 26. Springer, Berlin, pp 223–242 CrossRefGoogle Scholar
  21. Kluger Y, Basri R, Chang JT, Gerstein M (2003) Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res 13:703–716 CrossRefGoogle Scholar
  22. Küfer KH, Monz M, Scherrer A, Süss P, Alonso F, Azizi Sultan AS, Bortfeld T, Thieke C (2009) Multicriteria optimization in intensity modulated radiotherapy planning. In: Handbook of optimization in medicine. Springer optimization and its applications, vol 26. Springer, Berlin, pp 123–167 CrossRefGoogle Scholar
  23. Kundakcioglu OE, Pardalos PM (2009) The complexity of feature selection for consistent biclustering. In: Chaovalitwongse, WA, Butenko, S, Pardalos, PM (eds) Clustering challenges in biological networks, pp 257–266 Google Scholar
  24. Legras J, Legras B, Lambert J (1982) Software for linear and non-linear optimization in external radiotherapy. Comput Programs Biomed 15:223–242 Google Scholar
  25. Lim GJ (2008) Introduction to radiation therapy planning optimization. In: Optimization in medicine and biology. Auerbach Publications, pp 197–221 Google Scholar
  26. Lim GJ (2009) Optimization models and computational approaches for three-dimensional conformal radiation treatment planning. In: Handbook of optimization in medicine. Springer optimization and its applications, vol 26. Springer, Berlin, pp 53–81 CrossRefGoogle Scholar
  27. Lim GJ, Lee EK (eds) (2008) Optimization in medicine and biology. Auerbach Publications Google Scholar
  28. Lim GJ, Ferris MC, Wright SJ, Shepard DM, Earl MA (2007) An optimization framework for conformal radiation treatment planning. INFORMS J Comput 19(3):366–380 CrossRefGoogle Scholar
  29. Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinform 1:24–45 CrossRefGoogle Scholar
  30. McNay D, Michielssen E, Rogers RL, Taylor SA, Akhtari M, Sutherling WW (1996) Multiple source localization using genetic algorithms. J Neurosci Methods 64(2):163–172 CrossRefGoogle Scholar
  31. Miga MI, Kerner TE, Darcey TM (2002) Source localization using a current-density minimization approach. Biomed Eng, IEEE Trans Biomed Eng 49(7):743–745 CrossRefGoogle Scholar
  32. Milton J, Jung P (eds) (2003) Epilepsy as a dynamic disease. Springer, Berlin Google Scholar
  33. Mondaini RP, Pardalos PM (eds) (2008) Mathematical modelling of biosystems, vol 102. Springer, Berlin Google Scholar
  34. Mormann F, Andrzejak RG, Elger CE, Lehnertz K (2007) Seizure prediction: the long and winding road. Brain 130(2):314–333 CrossRefGoogle Scholar
  35. Pardalos PM, Hansen P (eds) (2008) Data mining and mathematical programming. American Mathematical Society, Providence Google Scholar
  36. Pardalos PM, Principe JC (eds) (2002) Biocomputing. Biocomputing, vol 1. Springer, Berlin Google Scholar
  37. Pardalos PM, Romeijn HE (eds) (2009) Handbook of optimization in medicine. Springer optimization and its applications, vol 26. Springer, Berlin Google Scholar
  38. Pardalos PM, Yatsenko VA (2006) Optimization approach to the estimation and control of Lyapunov exponents. J Optim Theory Appl 128:29–48 CrossRefGoogle Scholar
  39. Pardalos PM, Iasemidis L, Shiau DS, Sackellares JC, Chaovalitwongse W (2003a) Prediction of human epileptic seizures based on optimization and phase changes of brain electrical activity. Optim Methods Softw 18(1):81–104 CrossRefGoogle Scholar
  40. Pardalos PM, Iasemidis L, Shiau DS, Sackellares V, Yatsenko J, Chaovalitwongse W (2003b) Analysis of EGG data using optimization, statistics, and dynamical systems techniques. Comput Stat Data Anal 44:391–408 CrossRefGoogle Scholar
  41. Pardalos PM, Chaovalitwongse W, Iasemidis LD, Sackellares JC, Shiau DS, Carney PR, Prokopyev OA, Yatsenko VA (2004a) Seizure warning algorithm based on optimization and nonlinear dynamics. Math Program 101(2):365–385 CrossRefGoogle Scholar
  42. Pardalos PM, Sackellares C, Carney P, Iasemidis L (eds) (2004b) Quantitative neuroscience. Kluwer Academic, Dordrecht Google Scholar
  43. Pardalos PM, Sackellares JC, Carney PR, Iasemidis LD (eds) (2004c) Quantitative neuroscience models, algorithms, diagnostics, and therapeutic applications. Kluwer Academic, Dordrecht Google Scholar
  44. Pardalos PM, Boginski V, Vazakopoulos A (eds) (2007) Data mining in biomedicine. Springer optimization and its applications, vol 7. Springer, Berlin Google Scholar
  45. Pascual-Marqui RD (1999) Review of methods for solving the EEG inverse problem. Int J Bioelectromagn 1:75–86 Google Scholar
  46. Pugachev A, Xing L (2001) Pseudo beam’s-eye-view as applied to beam orientation selection in intensity-modulated radiation therapy. Int J Radiat Oncol, Biol, Phys 51:1361–1370 Google Scholar
  47. Reemtsen R, Albert M (2009) Continuous optimization of beamlet intensities for intensity modulated photon and proton radiotherapy. In: Handbook of optimization in medicine. Springer optimization and its applications, vol 26. Springer, Berlin, pp 83–122 CrossRefGoogle Scholar
  48. Rege M, Dong M, Fotouhi F (2008) Bipartite isoperimetric graph partitioning for data co-clustering. Data Min Knowl Discov 16(3):276–312 CrossRefGoogle Scholar
  49. Robert C, Gaudy JF, Limoge A (2002) Electroencephalogram processing using neural networks. Clin Neurophysiol 113(5):694–701 CrossRefGoogle Scholar
  50. Romeijn HE, Dempsey JF (2008) Intensity modulated radiation therapy treatment plan optimization. TOP Off J Span Soc Stat Oper Res 16(2):215–243 Google Scholar
  51. Sackellares JC (2008) Seizure prediction. Epilepsy Curr 8(3):55–59 CrossRefGoogle Scholar
  52. Sano M, Sawada Y (1985) Measurement of the Lyapunov spectrum from a chaotic time series. Phys Rev Lett 55:1082–1085 CrossRefGoogle Scholar
  53. Santosa B, Conway T, Trafalis T (2007) A hybrid knowledge based-clustering multi-class SVM approach for genes expression analysis. In: Data mining in biomedicine. Springer optimization and its applications, vol 7. Springer, Berlin, pp 262–274 CrossRefGoogle Scholar
  54. Sclabassi RJ, Sonmez M, Sun M (2001) EEG source localization: a neural network approach. Neurol Res 23(5):457–464 CrossRefGoogle Scholar
  55. Seref O, Kundakcioglu OE, Pardalos PM (eds) (2008) Data mining, systems analysis, and optimization in biomedicine, vol 953. Springer, Berlin Google Scholar
  56. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905 CrossRefGoogle Scholar
  57. Shiau DS, Luo Q, Gilmore SL, Roper SN, Pardalos PM, Sackellares JC, Iasemidis LD (2000) Epileptic seizures resetting revisited. Epilepsia 41(S7):208–209 Google Scholar
  58. Sun M, Sclabassi RJ (2000) The forward EEG solutions can be computed using artificial neural networks. IEEE Trans Biomed Eng 47(8):1044–1050 CrossRefGoogle Scholar
  59. Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(Suppl 1):S136–S144 Google Scholar
  60. Tanay A, Sharan R, Shamir R (2005) Biclustering algorithms: a survey. In: Handbook of computational molecular biology. Chapman and Hall/CRC Press, London/Boca Raton, pp 26–1, 26–17 Google Scholar
  61. Tun AK, Lye NT, Guanglan Z, Abeyratne UR, Saratchandran P (2000) RBF networks for source localization in quantitative electrophysiology. Crit Rev Biomed Eng 28:463–472 Google Scholar
  62. Van Hoey G, De Clercq J, Vanrumste B, Walle R, Lemahieu I, D’Have’ M, Boon P (2000) EEG dipole source localization using artificial neural networks. Phys Med Biol 45:997–1011 CrossRefGoogle Scholar
  63. Weinstein DM, Zhukov L, Potts G (2000) Localization of multiple deep epileptic sources in a realistic head model via independent component analysis. School of computing technical report UUCS-2000-004, University of Utah Google Scholar
  64. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Physica D 16:285–317 CrossRefGoogle Scholar
  65. Wu TH (1997) A note on a global approach for general 0–1 fractional programming. Eur J Oper Res 101:220–223 CrossRefGoogle Scholar
  66. Xanthopoulos P, Boyko N, Fan N, Pardalos PM (2010) Biclustering: algorithms and application in data mining. In: Wiley of operations research and management science (in press) Google Scholar
  67. Yang J, Wang H, Wang W, Yu P (2003) Enhanced biclustering on expression data. In: Proceeding of the third IEEE conference on bioinformatics and bioengineering, pp 321–327 Google Scholar
  68. Zha H, He X, Ding C, Simon H, MGu (2001) Bipartite graph partitioning and data clustering. In Proceedings of the tenth international conference on Information and knowledge management, pp 25–32 Google Scholar
  69. Zhukov L, Weinstein D, Johnson CR (2000) Independent component analysis for EEG source localization in realistic head models. Proc IEEE Eng Med Biol Soc, 22nd Ann Int Conf 3(19):87–96 Google Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2009

Authors and Affiliations

  • Panos M. Pardalos
    • 1
  • Vera Tomaino
    • 1
    • 2
  • Petros Xanthopoulos
    • 1
  1. 1.Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Experimental and Clinical MedicineUniversity Magna Græcia of CatanzaroCatanzaroItaly

Personalised recommendations