TOP

, Volume 19, Issue 1, pp 167–176 | Cite as

Balanced per capita contributions and level structure of cooperation

Original Paper

Abstract

We define a new value for games with a level structure and introduce a new property in these kind of games, called balanced per capita contributions, related with other properties in the literature. Further, we provide an axiomatic characterization of this value using this new property.

Level structure Value Balanced per capita contributions 

Mathematics Subject Classification (2000)

91A06 91A12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aumann R, Drèze J (1974) Cooperative games with coalition structure. Int J Game Theory 3:217–237 CrossRefGoogle Scholar
  2. Calvo E, Lasaga J, Winter E (1996) The principle of balanced contributions and hierarchies of cooperation. Math Soc Sci 31:171–182 CrossRefGoogle Scholar
  3. Calvo E, Santos JC (2000) Weighted weak semivalues. Int J Game Theory 29:1–9 CrossRefGoogle Scholar
  4. Gómez-Rúa M, Vidal-Puga JJ (2008) The axiomatic approach to three values in games with coalition structure. MPRA paper number 8904. Available at http://econpapers.repec.org/paper/pramprapa/8904.htm
  5. Hamiache G (2006) A value for games with coalition structures. Soc Choice Welf 26:93–105 CrossRefGoogle Scholar
  6. Hart S, Mas-Colell A (1989) Potential, value and consistency. Econometrica 57(3):589–614 CrossRefGoogle Scholar
  7. Herings PJJ, van der Laan G, Talman D (2008) The average tree solution for cycle-free graph games. Games Econ Behav 62:77–92 CrossRefGoogle Scholar
  8. Kalai E, Samet D (1987) On weighted Shapley values. Int J Game Theory 16:205–222 CrossRefGoogle Scholar
  9. Kalai E, Samet D (1988) Weighted Shapley values. In: Roth A (ed) The Shapley value: essays in honor of L Shapley. Cambridge University Press, Cambridge, pp 83–99 CrossRefGoogle Scholar
  10. Kamijo Y (2007) A collective value: a new interpretation of a value and a coalition structure. Waseda University. 21 COE-GLOPE Working Paper Series 27 Google Scholar
  11. Levy A, McLean RP (1989) Weighted coalition structure values. Games Econ Behav 1:234–249 CrossRefGoogle Scholar
  12. Myerson RB (1977) Graphs and cooperation in games. Math Oper Res 2:225–229 CrossRefGoogle Scholar
  13. Myerson RB (1980) Conference structures and fair allocation rules. Int J Game Theory 9:169–182 CrossRefGoogle Scholar
  14. Owen G (1977) Values of games with a priori unions. In: Henn R, Moeschlin O (eds) Essays in mathematical economics and game theory. Springer, Berlin/Heidelberg/New York, pp 76–88 Google Scholar
  15. Sánchez F (1997) Balanced contributions axiom in the solution of cooperative games. Games Econ Behav 20:161–168 CrossRefGoogle Scholar
  16. Shapley LS (1953a) Additive and non-additive set functions. PhD Dissertation, Princeton University Google Scholar
  17. Shapley LS (1953b) A value for n-person games. In: Huhn HW, Tucker AW (eds) Contributions to the theory of games II. Annals of mathematics studies, vol 28. Princeton University Press, Princeton, pp 307–317 Google Scholar
  18. Vidal-Puga J (2005) Implementation of the levels structure value. Ann Oper Res 137(1):191–209 CrossRefGoogle Scholar
  19. Vidal-Puga J (2006) The Harsanyi paradox and the “right to talk” in bargaining among coalitions. EconWPA Working paper number 0501005. Available at http://ideas.repec.org/p/wpa/wuwpga/0501005.html
  20. Winter E (1989) A value for cooperative games with level structure of cooperation. Int J Game Theory 18:227–240 CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2009

Authors and Affiliations

  1. 1.Departamento de Estatística e Investigación OperativaUniversidade de VigoVigoSpain
  2. 2.Research Group in Economic Analysis and Departamento de Estatística e Investigación OperativaUniversidade de VigoVigoSpain

Personalised recommendations