Advertisement

TOP

, Volume 15, Issue 2, pp 256–280 | Cite as

The class of microarray games and the relevance index for genes

  • Stefano Moretti
  • Fioravante Patrone
  • Stefano Bonassi
Original Paper

Abstract

Nowadays, microarray technology is available to generate a huge amount of information on gene expression. This information must be statistically processed and analyzed, in particular, to identify those genes which are useful for the diagnosis and prognosis of specific diseases. We discuss the possibility of applying game-theoretical tools, like the Shapley value, to the analysis of gene expression data.

Via a “truncation” technique, we build a coalitional game whose aim is to stress the relevance (“sufficiency”) of groups of genes for the specific disease we are interested in. The Shapley value of this game is used to select those genes which deserve further investigation. To justify the use of the Shapley value in this context, we axiomatically characterize it using properties with a genetic interpretation.

Keywords

Coalitional game Shapley value Power index Gene expression Microarray 

Mathematics Subject Classification (2000)

91A12 91A80 92B15 92C40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissue probed by oligonucleotide arrays. Proc Natl Acad Sci USA 96:6745–6750 CrossRefGoogle Scholar
  2. Banzhaf JF III (1965) Weighted voting doesn’t work: a game theoretic approach. Rutgers Law Rev 19:317–343 Google Scholar
  3. Becquet C, Blachon S, Jeudy B, Boulicaut JG, Gandrillon O (2002) Strong-association-rule mining for large-scale gene-expression data analysis: a case study on human SAGE data. Genome Biol 3(12) Google Scholar
  4. Bower JM, Bolouri H (eds) (2001) Computational modelling of genetic and biochemical networks computational molecular biology series. MIT Press, Cambridge Google Scholar
  5. Branzei R, Moretti S, Norde H, Tijs S (2004) The P-value for cost sharing in minimum cost spanning tree situations. Theory Decis 56:47–61 CrossRefGoogle Scholar
  6. Dudoit S, Fridlyand J (2003) Classification in microarray experiments. In: Speed TP (ed) Statistical analysis of gene expression microarray data. Chapman & Hall/CRC, London/Boca Raton, pp 93–158 Google Scholar
  7. Dudoit S, Yang YH, Luu P, Speed TP (2001) Normalization for cDNA microarray data. In: Bittner ML, Chen Y, Dorsel AN, Dougherty ER (eds) Microarrays: optical technologies and informatics. Proceedings of SPIE, vol 4266, pp 141–152 Google Scholar
  8. Fragnelli V, Moretti S (2007) A game theoretical approach to the classification problem in gene expression data analysis. Comput Math Appl, doi: 10/1016/j.camwa.2006.12.088 Google Scholar
  9. Fujarewicz K, Wiench M (2003) Selecting differentially expressed genes for colon tumor classification. Int J Appl Math Comput Sci 13(3):327–335 Google Scholar
  10. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:80, http://genomebiology.com/2004/5/10/R80 CrossRefGoogle Scholar
  11. Golub T, Slonim D, Tamayo P, Huard C, Gaasenbeek M, Mesirov J, Coller H, Loh M, Downing J, Caligiuri M, Bloomfield C, Lander E (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537 CrossRefGoogle Scholar
  12. Grabisch M, Roubens M (1999) An axiomatic approach to the concept of interaction among players in cooperative games. Int J Game Theory 28:547–565 CrossRefGoogle Scholar
  13. Jager J (2006) Deriving small diagnostic biomarker panels from genome wide. PhD Dissertation, Max Planck Institute for Molecular Genetics Google Scholar
  14. Kalai E, Samet D (1988) Weighted Shapley values. In: Roth A (ed) The Shapley value, essays in honor of Lloyd S. Shapley. Cambridge University Press, Cambridge, pp 83–100 Google Scholar
  15. Kasahara M, Takahashi Y, Nagata T, Asai S, Eguchi T, Ishii Y, Fujii M, Ishikawa K (2000) Thymidylate synthase expression correlates closely with E2F1 expression in colon cancer. Clin Cancer Res 6:2707–2711 Google Scholar
  16. Kaufman A, Kupiec M, Ruppin E (2004) Multi-knockout genetic network analysis: the Rad6 example. In: Proceedings of the 2004 IEEE computational systems bioinformatics conference (CSB’04), August 16–19, 2004, Standford, California Google Scholar
  17. Keinan A, Sandbank B, Hilgetag CC, Meilijson I, Ruppin E (2004) Fair attribution of functional contribution in artificial and biological networks. Neural Comput 16(9):1887–1915 CrossRefGoogle Scholar
  18. Moler EJ, Chow, ML, Mian IS (2000) Analysis of molecular profile data using generative and discriminative methods. Physiol Genomics 4:109–126 Google Scholar
  19. Moretti S (2006a) Game Theory applied to gene expression analysis. PhD Dissertation, University of Genoa, Italy Google Scholar
  20. Moretti S (2006b) Minimum cost spanning tree games and gene expression data analysis. In: ACM international conference proceeding series, p 199 Google Scholar
  21. Owen G (1995) Game theory, 3rd edn. Academic, San Diego Google Scholar
  22. Parmigiani G, Garret ES, Irizarry RA, Scott SL (2003) The analysis of gene expression data: an overview of methods and software. In: Parmigiani G, Garret ES, Irizarry RA, Zeger SL (eds) The analysis of gene expression data: methods and software. Springer, New York Google Scholar
  23. R Development Core Team (2004) R: a language and environment for statistical. R foundation for statistical computing, Vienna, Austria, 2004, ISBN 3-900051-00-3, http://www.R-project.org
  24. Ramamurthy KG (1990) Coherent structures and simple games. Kluwer Academic, Dordrecht Google Scholar
  25. Shapley LS (1953) A value for n-person games. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games II. Annals of mathematics studies, vol 28. Princeton University Press, Princeton, pp 307–317 Google Scholar
  26. Shapley LS, Shubik M (1954) A method for evaluating the distribution of power in a committee system. Am Political Sci Rev 48:787–792 CrossRefGoogle Scholar
  27. Smith K, Speed T (2003) Normalization of cDNA microarray data. Methods 31:265–273 CrossRefGoogle Scholar
  28. Storey JD, Tibshirani R (2003) SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays. In: Parmigiani G, Garret ES, Irizarry RA, Zeger SL (eds) The analysis of gene expression data: methods and software. Springer, New York Google Scholar
  29. Su Y, Murali TM, Pavlovic V, Schaffer M, Kasif S (2003) RankGene: identification of diagnostic genes based on expression data. Bioinformatics 19(12):1578–1579 CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2007

Authors and Affiliations

  • Stefano Moretti
    • 1
  • Fioravante Patrone
    • 2
  • Stefano Bonassi
    • 1
  1. 1.Unit of Molecular EpidemiologyNational Cancer Research InstituteGenoaItaly
  2. 2.DIPTEMUniversity of GenovaGenoaItaly

Personalised recommendations