, Volume 15, Issue 2, pp 281–296 | Cite as

Nonhomogeneous geometric distributions with relations to birth and death processes

  • Marvin Mandelbaum
  • Myron HlynkaEmail author
  • Percy H. Brill
Original Paper


In this paper we introduce and study nonhomogeneous geometric random variables and their representations. We relate these to standard probability mass functions and to representations using birth-and-death processes. This facilitates comparison of various queueing models by birth/death models. We examine different queueing models with the same limiting distribution.


Nonhomogeneous Geometric distribution Queueing Birth-and-death processes 

Mathematics Subject Classification (2000)

60E05 60K25 90B22 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boswell MT, Ord JK, Patil GP (1979) Chance mechanisms underlying univariate distributions. International Co-operative Publishing House Google Scholar
  2. Darwin JH (1953) Population differences between species growing according to simple birth and death processes. Biometrika 40:370–382 Google Scholar
  3. Feller W (1968) An introduction to probability theory and its applications, vol 1, 3rd edn. Wiley, New York Google Scholar
  4. Johnson NL, Kotz S (1969) Discrete distributions. Houghton Mifflin, Boston Google Scholar
  5. Kashyap BRK, Chaudhry ML (1988) An introduction to queueing theory. A&A Publications Google Scholar
  6. Ross SM (2006) Introduction to probability models, 9th edn. Academic, New York Google Scholar
  7. Simon H (1955) On a class of skew distribution functions. Biometrika 42:425–440 Google Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2007

Authors and Affiliations

  • Marvin Mandelbaum
    • 1
  • Myron Hlynka
    • 2
    Email author
  • Percy H. Brill
    • 3
  1. 1.Department of Computer ScienceYork UniversityTorontoCanada
  2. 2.Department of Mathematics & StatisticsUniversity of WindsorWindsorCanada
  3. 3.Department of Management ScienceUniversity of WindsorWindsorCanada

Personalised recommendations