Advertisement

TEST

, Volume 27, Issue 3, pp 716–748 | Cite as

Comparing implementations of global and local indicators of spatial association

  • Roger S. BivandEmail author
  • David W. S. Wong
Original Paper

Abstract

Functions to calculate measures of spatial association, especially measures of spatial autocorrelation, have been made available in many software applications. Measures may be global, applying to the whole data set under consideration, or local, applying to each observation in the data set. Methods of statistical inference may also be provided, but these will, like the measures themselves, depend on the support of the observations, chosen assumptions, and the way in which spatial association is represented; spatial weights are often used as a representational technique. In addition, assumptions may be made about the underlying mean model, and about error distributions. Different software implementations may choose to expose these choices to the analyst, but the sets of choices available may vary between these implementations, as may default settings. This comparison will consider the implementations of global Moran’s I, Getis–Ord G and Geary’s C, local \(I_i\) and \(G_i\), available in a range of software including Crimestat, GeoDa, ArcGIS, PySAL and R contributed packages.

Keywords

Software implementations Global spatial autocorrelation Local spatial autocorrelation Lattice data 

Mathematics Subject Classification

62P12 62P20 62P25 

Notes

Acknowledgements

We would like to thank the editors and reviewers for constructive suggestions that we hope have clarified the conclusions of this comparative study. We would also like to thank Shiyang Ruan for assistance with ArcGIS Python programming.

References

  1. Alam M, Rönnegård L, Shen X (2015) Fitting conditional and simultaneous autoregressive spatial models in hglm. R J 7(2):5–18. http://journal.r-project.org/archive/2015-2/alam-ronnegard-shen.pdf
  2. Allaire JJ, Ushey K, Tang Y (2018) reticulate: interface to ’Python’. https://CRAN.R-project.org/package=reticulate, R package version 1.8
  3. Anselin L (1992) SpaceStat, a software program for analysis of spatial data. National Center for Geographic Information and Analysis (NCGIA), University of California, Santa BarbaraGoogle Scholar
  4. Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27(2):93–115CrossRefGoogle Scholar
  5. Anselin L (1996) The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In: Fischer MM, Scholten HJ, Unwin D (eds) Spatial analytical perspectives on GIS. Taylor & Francis, London, pp 111–125Google Scholar
  6. Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geogr Anal 38:5–22CrossRefGoogle Scholar
  7. Assunção R, Reis EA (1999) A new proposal to adjust Moran’s I for population density. Stat Med 18:2147–2162CrossRefGoogle Scholar
  8. Bivand RS (1992) SYSTAT-compatible software for modeling spatial dependence among observations. Comput Geosci 18(8):951–963.  https://doi.org/10.1016/0098-3004(92)90013-H CrossRefGoogle Scholar
  9. Bivand RS (1998) Software and software design issues in the exploration of local dependence. The Statistician 47:499–508Google Scholar
  10. Bivand RS (2006) Implementing spatial data analysis software tools in R. Geogr Anal 38:23–40CrossRefGoogle Scholar
  11. Bivand RS (2008) Implementing representations of space in economic geography. J Reg Sci 48:1–27CrossRefGoogle Scholar
  12. Bivand RS (2009) Applying measures of spatial autocorrelation: computation and simulation. Geogr Anal 41(375–384):10Google Scholar
  13. Bivand RS, Gebhardt A (2000) Implementing functions for spatial statistical analysis using the R language. J Geogr Syst 2:307–317CrossRefGoogle Scholar
  14. Bivand RS, Piras G (2015) Comparing implementations of estimation methods for spatial econometrics. J Stat Softw 63(1):1–36.  https://doi.org/10.18637/jss.v063.i18 CrossRefGoogle Scholar
  15. Bivand RS, Portnov BA (2004) Exploring spatial data analysis techniques using R: the case of observations with no neighbours. In: Anselin L, Florax RJGM, Rey SJ (eds) Advances in spatial econometrics: methodology, tools, applications. Springer, Berlin, pp 121–142CrossRefGoogle Scholar
  16. Bivand RS, Müller W, Reder M (2009) Power calculations for global and local Moran’s I. Comput Stat Data Anal 53:2859–2872MathSciNetCrossRefGoogle Scholar
  17. Bivand RS, Sha Z, Osland L, Thorsen IS (2017) A comparison of estimation methods for multilevel models of spatially structured data. Spat Stat.  https://doi.org/10.1016/j.spasta.2017.01.002 MathSciNetCrossRefGoogle Scholar
  18. Bjornstad ON (2018) ncf: spatial covariance functions. https://CRAN.R-project.org/package=ncf, R package version 1.2-5
  19. Caldas de Castro M, Singer BH (2006) Controlling the false discovery rate: a new application to account for multiple and dependent tests in local statistics of spatial association. Geogr Anal 38(2):180–208.  https://doi.org/10.1111/j.0016-7363.2006.00682.x CrossRefGoogle Scholar
  20. Cliff AD, Ord JK (1969) The problem of spatial autocorrelation. In: Scott AJ (ed) London Papers in Regional Science 1, Studies in Regional Science. Pion, London, pp 25–55Google Scholar
  21. Cliff AD, Ord JK (1971) Evaluating the percentage points of a spatial autocorrelation coefficient. Geogr Anal 3(1):51–62.  https://doi.org/10.1111/j.1538-4632.1971.tb00347.x CrossRefGoogle Scholar
  22. Cliff AD, Ord JK (1973) Spatial autocorrelation. Pion, LondonGoogle Scholar
  23. Cliff AD, Ord JK (1981) Spatial processes. Pion, LondonzbMATHGoogle Scholar
  24. Cressie NAC (1993) Statistics for spatial data. Wiley, New YorkCrossRefGoogle Scholar
  25. Duncan OD, Cuzzort RP, Duncan B (1961) Statistical geography: problems in analyzing areal data. Free Press, GlencoeGoogle Scholar
  26. Geary RC (1954) The contiguity ratio and statistical mapping. Inc Stat 5:115–145Google Scholar
  27. Getis A, Ord JK (1992) The analysis of spatial association by the use of distance statistics. Geogr Anal 24(2):189–206Google Scholar
  28. Getis A, Ord JK (1993) Erratum: The analysis of spatial association by the use of distance statistics. Geogr Anal 25(3):276Google Scholar
  29. Getis A, Ord JK (1996) Local spatial statistics: an overview. In: Longley P, Batty M (eds) Spatial analysis: modelling in a GIS environment. GeoInformation International, Cambridge, pp 261–277Google Scholar
  30. Gómez-Rubio V, Ferrándiz-Ferragud J, López-Quílez A (2005) Detecting clusters of disease with R. J Geogr Syst 7(2):189–206CrossRefGoogle Scholar
  31. Goodchild MF (1986) Spatial autocorrelation. Geobooks, Norwich. https://alexsingleton.files.wordpress.com/2014/09/47-spatial-aurocorrelation.pdf
  32. Hepple LW (1998) Exact testing for spatial autocorrelation among regression residuals. Environ Plan A 30:85–108CrossRefGoogle Scholar
  33. Kalogirou S (2017) lctools: local correlation, spatial inequalities, geographically weighted regression and other tools. https://CRAN.R-project.org/package=lctools, R package version 0.2-6
  34. Levine N (2006) Crime mapping and the CrimeStat program. Geogr Anal 38(1):41–56CrossRefGoogle Scholar
  35. Levine N (2017) Crimestat: a spatial statistical program for the analysis of crime incidents. In: Shekhar S, Xiong H, Zhou X (eds) Encyclopedia of GIS. Springer, Cham, pp 381–388.  https://doi.org/10.1007/978-3-319-17885-1_229 CrossRefGoogle Scholar
  36. McMillen DP (2003) Spatial autocorrelation or model misspecification? Int Reg Sci Rev 26:208–217CrossRefGoogle Scholar
  37. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23MathSciNetCrossRefGoogle Scholar
  38. Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27(3):286–306Google Scholar
  39. Ord JK, Getis A (2001) Testing for local spatial autocorrelation in the presence of global autocorrelation. J Reg Sci 41(3):411–432CrossRefGoogle Scholar
  40. Ord JK, Getis A (2012) Local spatial heteroscedasticity (LOSH). Ann Reg Sci 48(2):529–539CrossRefGoogle Scholar
  41. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290CrossRefGoogle Scholar
  42. Rey SJ, Anselin L (2007) Pysal: a python library of spatial analytical methods. Rev Reg Stud 37(1):5–27Google Scholar
  43. Rey SJ, Anselin L, Li X, Pahle R, Laura J, Li W, Koschinsky J (2015) Open geospatial analytics with pysal. ISPRS Int J Geoinf 4(2):815–836.  https://doi.org/10.3390/ijgi4020815 CrossRefGoogle Scholar
  44. Ripley BD (1981) Spatial statistics. Wiley, New YorkCrossRefGoogle Scholar
  45. Schabenberger O, Gotway CA (2005) Statistical methods for spatial data analysis. Chapman & Hall, Boca RatonzbMATHGoogle Scholar
  46. Scott LM, Janikas MV (2010) Spatial statistics in ArcGIS. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis: software tools, methods and applications. Springer, Berlin, pp 27–41.  https://doi.org/10.1007/978-3-642-03647-7_2 CrossRefGoogle Scholar
  47. Sokal RR, Oden NL (1978) Spatial autocorrelation in biology: 1. methodology. Biol J Linn Soc 10(2):199–228.  https://doi.org/10.1111/j.1095-8312.1978.tb00013.x CrossRefGoogle Scholar
  48. Sokal RR, Oden NL, Thomson BA (1998) Local spatial autocorrelation in a biological model. Geogr Anal 30:331–354CrossRefGoogle Scholar
  49. Tiefelsdorf M (2000) Modelling spatial processes: the identification and analysis of spatial relationships in regression residuals by means of Moran’s I. Springer, BerlinCrossRefGoogle Scholar
  50. Tiefelsdorf M (2002) The saddlepoint approximation of Moran’s I and local Moran’s \({I}_i\) reference distributions and their numerical evaluation. Geogr Anal 34:187–206Google Scholar
  51. Tiefelsdorf M, Boots BN (1995) The exact distribution of Moran’s I. Environ Plan A 27:985–999CrossRefGoogle Scholar
  52. Tiefelsdorf M, Boots BN (1997) A note on the extremities of local Moran’s I and their impact on global Moran’s I. Geogr Anal 29:248–257CrossRefGoogle Scholar
  53. Westerholt R, Resch B, Zipf A (2015) A local scale-sensitive indicator of spatial autocorrelation for assessing high- and low-value clusters in multiscale datasets. Int J Geogr Inf Sci 29(5):868–887.  https://doi.org/10.1080/13658816.2014.1002499 CrossRefGoogle Scholar
  54. Westerholt R, Resch B, Mocnik FB, Hoffmeister D (2018) A statistical test on the local effects of spatially structured variance. Int J Geogr Inf Sci 32(3):571–600.  https://doi.org/10.1080/13658816.2017.1402914 CrossRefGoogle Scholar
  55. Wong DWS, Lee J (2005) Statistical analysis of geographic information with ArcView GIS and ArcGIS. Wiley, New YorkGoogle Scholar
  56. Xu M, Mei CL, Yan N (2014) A note on the null distribution of the local spatial heteroscedasticity (LOSH) statistic. Ann Reg Sci 52(3):697–710CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2018

Authors and Affiliations

  1. 1.Department of EconomicsNorwegian School of EconomicsBergenNorway
  2. 2.Department of Geography and GeoInformation ScienceGeorge Mason UniversityFairfaxUSA

Personalised recommendations