, Volume 26, Issue 2, pp 331–352 | Cite as

Dating multiple change points in the correlation matrix

  • Pedro GaleanoEmail author
  • Dominik Wied
Original Paper


A nonparametric procedure for detecting and dating multiple change points in the correlation matrix of sequences of random variables is proposed. The procedure is based on a recently proposed test for changes in correlation matrices at an unknown point in time. Although the procedure requires constant expectations and variances, only mild assumptions on the serial dependence structure are assumed. The convergence rate of the change point estimators is derived and the asymptotic validity of the procedure is proved. Moreover, the performance of the proposed algorithm in finite samples is illustrated by means of a simulation study and the analysis of a real data example with financial returns. These examples show that the algorithm has large power in finite samples.


Binary segmentation algorithm Correlation matrix CUSUM statistics Financial returns Multiple change point detection Nonparametric estimation 

Mathematics Subject Classification

62M10 62G10 91B84 



Financial support by Ministerio de Economía y Competitividad Grant ECO2015-66593-P and Deutsche Forschungsgemeinschaft (SFB 823, project A1) is gratefully acknowledged. We also would like to thank three anonymous referees for very helpful comments.

Supplementary material

11749_2016_513_MOESM1_ESM.pdf (129 kb)
Supplementary material 1 (pdf 129 KB)


  1. Andreou E, Ghysels E (2002) Detecting multiple breaks in financial market volatility dynamics. J Appl Econ 17(5):579–600CrossRefGoogle Scholar
  2. Aue A, Horváth L (2013) Structural breaks in time series. J Time Ser Anal 34(1):1–16MathSciNetCrossRefzbMATHGoogle Scholar
  3. Aue A, Hörmann S, Horvath L, Reimherr M (2009) Break detection in the covariance structure of multivariate time series models. Ann Stat 37(6B):4046–4087MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bai J (1997) Estimating multiple breaks one at a time. Econ Theory 13(3):315–352MathSciNetCrossRefGoogle Scholar
  5. Bai J, Perron P (1998) Estimating and testing linear models with multiple structural changes. Econometrica 66(1):47–78MathSciNetCrossRefzbMATHGoogle Scholar
  6. Berens T, Weiß G, Wied D (2015) Testing for structural breaks in correlations: does it improve value-at-risk forecasting? J Empir Financ 32:135–152CrossRefGoogle Scholar
  7. Calhoun G (2016) Block bootstrap consistency under weak assumptions. Iowa State Working Paper version, online Accessed Sept 2016
  8. Carrasco M, Chen X (2002) Mixing and moment properties of various GARCH and stochastic volatility models. Econ Theory 18(1):17–39MathSciNetCrossRefzbMATHGoogle Scholar
  9. Cheng G (2015) Moment consistency of the exchangeably weighted bootstrap for semiparametric m-estimation. Scand J Stat 42(3):665–684MathSciNetCrossRefzbMATHGoogle Scholar
  10. Csörgö M, Horváth L (1997) Limit theorems in change-point analysis. Wiley, New YorkzbMATHGoogle Scholar
  11. Davidson J (1994) Stochastic limit theory: an introduction for econometricians. Oxford University Press, OxfordCrossRefzbMATHGoogle Scholar
  12. Ding Z, Engle R (2001) Large scale conditional covariance matrix modeling, estimation and testing. Acad Econ Pap 29(2):157–184Google Scholar
  13. Dümbgen L (1991) The asymptotic behavior of some nonparametric change-point estimators. Ann Stat 19:1471–1491MathSciNetCrossRefzbMATHGoogle Scholar
  14. Dvorák M (2017) Darling-erdös-type test for change detection in parameters and variance for stationary var models. Commun Stat Theory Methods 46(1):465–484CrossRefzbMATHGoogle Scholar
  15. Dvorák M, Prášková Z (2013) On testing changes in autoregressive parameters of a var model. Commun Stat Theory Methods 42(7):1208–1226MathSciNetCrossRefzbMATHGoogle Scholar
  16. Fryzlewicz P (2014) Wild binary segmentation for multiple change-point detection. Ann Stat 42(6):2243–2281MathSciNetCrossRefzbMATHGoogle Scholar
  17. Fryzlewicz P, Rao SS (2014) Multiple-change-point detection for auto-regressive conditional heteroscedastic processes. J R Stat Soc Ser B 76(5):903–924MathSciNetCrossRefGoogle Scholar
  18. Galeano P (2007) The use of cumulative sums for detection of changepoints in the rate parameter of a poisson process. Comput Stat Data Anal 51(12):6151–6165MathSciNetCrossRefzbMATHGoogle Scholar
  19. Galeano P, Peña D (2007) Covariance changes detection in multivariate time series. J Stat Plan Inference 137(1):194–211MathSciNetCrossRefzbMATHGoogle Scholar
  20. Galeano P, Tsay R (2010) Shifts in individual parameters of a garch model. J Financ Econ 8(1):122–153Google Scholar
  21. Galeano P, Wied D (2014) Multiple break detection in the correlation structure of random variables. Comput Stat Data Anal 76:262–282MathSciNetCrossRefGoogle Scholar
  22. Gooijer JD (2006) Detecting change-points in multidimensional stochastic processes. Comput Stat Data Anal 51(3):1892–1903MathSciNetCrossRefzbMATHGoogle Scholar
  23. Guralnik V, Srivastava J (1999) Event detection from time series data. In: Proceedings of the 5th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 33–42Google Scholar
  24. Hawkins DW (2001) Fitting multiple change-point models to data. Comput Stat Data Anal 37:323–341MathSciNetCrossRefzbMATHGoogle Scholar
  25. Inclán C, Tiao G (1994) Use of cumulative sums of squares for retrospective detection of changes of variance. J Am Stat Assoc 89(427):913–923MathSciNetzbMATHGoogle Scholar
  26. Jandhyala V, Fotopoulos S, McNeill I, Liu P (2013) Inference for single and multiple change-points in time series. J Time Ser Anal. doi: 10.1111/jtsa12035 MathSciNetzbMATHGoogle Scholar
  27. Kato K (2011) A note on moment convergence of bootstrap m-estimators. Stat Decis 28:51–61MathSciNetzbMATHGoogle Scholar
  28. Lavielle M, Teyssière G (2006) Detection of multiple change-points in multivariate time series. Lith Math J 46:287–306CrossRefzbMATHGoogle Scholar
  29. Olshen A, Venkatraman E (2004) Circular binary segmentation for the analysis of array-based dna copy number data. Biostatistics 5:557–572CrossRefzbMATHGoogle Scholar
  30. Ploberger W, Krämer W, Kontrus K (1989) A new test for structural stability in the linear regression model. J Econ 40:307–318MathSciNetCrossRefzbMATHGoogle Scholar
  31. Vostrikova L (1981) Detecting disorder in multidimensional random processes. Sov Math Doklady 24:55–59zbMATHGoogle Scholar
  32. Wied D (2015) A nonparametric test for a constant correlation matrix. Econ Rev. doi: 10.1080/074749382014998152 Google Scholar
  33. Wied D, Krämer W, Dehling H (2012) Testing for a change in correlation at an unknown point in time using an extended functional delta method. Econ Theory 68(3):570–589MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2016

Authors and Affiliations

  1. 1.Department of Statistics, UC3M-BS Institute of Financial Big DataUniversidad Carlos III de MadridGetafe, MadridSpain
  2. 2.Institute for Econometrics and StatisticsUniversity of CologneKölnGermany
  3. 3.TU DortmundFakultät StatistikDortmundGermany

Personalised recommendations