Marginal integration M-estimators for additive models

Abstract

Additive regression models have a long history in multivariate non-parametric regression. They provide a model in which the regression function is decomposed as a sum of functions, each of them depending only on a single explanatory variable. The advantage of additive models over general non-parametric regression models is that they allow to obtain estimators converging at the optimal univariate rate avoiding the so-called curse of dimensionality. Beyond backfitting, marginal integration is a common procedure to estimate each component in additive models. In this paper, we propose a robust estimator of the additive components which combines local polynomials on the component to be estimated with the marginal integration procedure. The proposed estimators are consistent and asymptotically normally distributed. A simulation study allows to show the advantage of the proposal over the classical one when outliers are present in the responses, leading to estimators with good robustness and efficiency properties.

This is a preview of subscription content, log in to check access.

References

  1. Alimadad A, Salibián-Barrera M (2012) An outlier-robust fit for generalized additive models with applications to disease outbreak detection. J Am Stat Assoc 106:719–731

    MathSciNet  Article  MATH  Google Scholar 

  2. Baek J, Wehrly T (1993) Kernel estimation for additive models under dependence. Stoch Process Appl 47:95–112

    MathSciNet  Article  MATH  Google Scholar 

  3. Bianco A, Boente G (1998) Robust kernel estimators for additive models with dependent observations. Can J Stat 6:239–255

    MathSciNet  Article  MATH  Google Scholar 

  4. Bianco A, Boente G (2007) Robust estimators under a semiparametric partly linear autoregression model: asymptotic behavior and bandwidth selection. J Time Ser Anal 28:274–306

    MathSciNet  Article  MATH  Google Scholar 

  5. Boente G, Fraiman R (1989) Robust nonparametric regression estimation. J Multivar Anal 29:180–198

    MathSciNet  Article  MATH  Google Scholar 

  6. Boente G, Martínez A (2016) Estimating additive models with missing responses. Commun Stat Theory Methods 45:413–426

    MathSciNet  Article  MATH  Google Scholar 

  7. Boente G, Fraiman R, Meloche J (1997) Robust plug-in bandwidth estimators in nonparametric regression. J Stat Plan Inference 57:109–142

    MathSciNet  Article  MATH  Google Scholar 

  8. Boente G, González-Manteiga W, Pérez-González A (2009) Robust nonparametric estimation with missing data. J Stat Plan Inference 139:571–592

    MathSciNet  Article  MATH  Google Scholar 

  9. Boente G, Ruiz M, Zamar R (2010) On a robust local estimator for the scale function in heteroscedastic nonparametric regression. Stat Probab Lett 80:1185–1195

    MathSciNet  Article  MATH  Google Scholar 

  10. Buja A, Hastie T, Tibshirani R (1989) Linear smoothers and additive models (with discussion). Ann Stat 17:453–555

    Article  MATH  Google Scholar 

  11. Cantoni E, Ronchetti E (2001) Resistant selection of the smoothing parameter for smoothing splines. Stat Comput 11:141–146

    MathSciNet  Article  Google Scholar 

  12. Chen R, Härdle W, Linton O, Serverance-Lossin E (1996) Nonparametric estimation of additive separable regression models. In: Härdle W, Schimek MG (eds) Statistical theory and computational aspects of smoothing. Proceedings of the COMPSTAT 94 satellite meeting. Springer, pp 247–265

  13. Croux C, Gijbels I, Prosdocimi I (2011) Robust estimation of mean and dispersion functions in extended generalized additive models. Biometrics 68:31–44

    MathSciNet  Article  MATH  Google Scholar 

  14. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Monographs on statistics and applied probability No. 43. Chapman and Hall, London

    Google Scholar 

  15. Hengartner N, Sperlich S (2005) Rate optimal estimation with the integration method in the presence of many covariates. J Multivar Anal 95:246–272

    MathSciNet  Article  MATH  Google Scholar 

  16. Kong E, Linton O, Xia Y (2010) Uniform Bahadur representation for local polynomial estimates of \(M\)-regression and its application to the additive model. Econom Theory 26:1529–1564

    MathSciNet  Article  MATH  Google Scholar 

  17. Leung D (2005) Cross-validation in nonparametric regression with outliers. Ann Stat 33:2291–2310

    MathSciNet  Article  MATH  Google Scholar 

  18. Leung D, Marriott F, Wu E (1993) Bandwidth selection in robust smoothing. J Nonparametric Stat 4:333–339

    MathSciNet  Article  MATH  Google Scholar 

  19. Li J, Zheng Z, Zheng M (2012) Robust estimation of additive models based on marginal integration. http://www.math.pku.edu.cn:8000/var/preprint/7065

  20. Linton O, Nielsen J (1995) A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika 82:93–101

    MathSciNet  Article  MATH  Google Scholar 

  21. Maronna R, Martin RD, Yohai V (2006) Robust statistics: theory and methods. Wiley, New York

    Google Scholar 

  22. Martínez-Miranda MD, Raya-Miranda R, González-Manteiga W, González-Carmona A (2008) A bootstrap local bandwidth selector for additive models. J Comput Graph Stat 17:38–55

    MathSciNet  Article  Google Scholar 

  23. Nielsen J, Linton O (1998) An optimization interpretation of integration and back-fitting estimators for separable nonparametric models. J R Stat Soc 60:217–222

    MathSciNet  Article  MATH  Google Scholar 

  24. Raya-Miranda R, Martínez-Miranda MD (2011) Data-driven local bandwidth selection for additive models with missing data. Appl Math Comput 217:10328–10342

    MathSciNet  MATH  Google Scholar 

  25. Severance-Lossin E, Sperlich S (1999) Estimation of derivatives for additive separable models. Statistics 33:241–265

    MathSciNet  Article  MATH  Google Scholar 

  26. Sperlich S, Linton O, Härdle W (1999) Integration and backfitting methods in additive models-finite sample properties and comparison. TEST 8:419–458

    Article  MATH  Google Scholar 

  27. Stone CJ (1980) Optimal rates of convergence for nonparametric estimators. Ann Stat 8:1348–1360

    MathSciNet  Article  MATH  Google Scholar 

  28. Stone CJ (1982) Optimal global rates of convergence for nonparametric regression. Ann Stat 10:1040–1053

    MathSciNet  Article  MATH  Google Scholar 

  29. Stone CJ (1985) Additive regression and other nonparametric models. Ann Stat 13:689–705

    MathSciNet  Article  MATH  Google Scholar 

  30. Tjøstheim D, Auestad B (1994) Nonparametric identification of nonlinear time series: selecting significant lags. J Am Stat Assoc 89:1410–1430

    MathSciNet  MATH  Google Scholar 

  31. Wang F, Scott D (1994) The \(L_1\) method for robust nonparametric regression. J Am Stat Assoc 89:65–76

    MathSciNet  Google Scholar 

  32. Wong RKW, Yao F, Lee TCM (2014) Robust estimation for generalized additive models. J Comput Graph Stat 23:270–289

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Associate Editor and two anonymous referees for valuable comments which led to an improved version of the original paper. This research was partially supported by Grants pip 112-201101-00339 from the Consejo Nacional de Investigaciones Científicas y Técnicas, pict 2014-0351 from the Agencia Nacional de Promoción Científica y Tecnológica and 20120130100279BA from the Universidad de Buenos Aires at Buenos Aires, Argentina.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Graciela Boente.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 625 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boente, G., Martínez, A. Marginal integration M-estimators for additive models. TEST 26, 231–260 (2017). https://doi.org/10.1007/s11749-016-0508-0

Download citation

Keywords

  • Additive models
  • Local M-estimation
  • Kernel weights
  • Marginal integration
  • Robustness

Mathematics Subject Classification

  • 62G35
  • 62G20
  • 62G05