Abstract
We propose methodology for estimation of sparse precision matrices and statistical inference for their low-dimensional parameters in a high-dimensional setting where the number of parameters p can be much larger than the sample size. We show that the novel estimator achieves minimax rates in supremum norm and the low-dimensional components of the estimator have a Gaussian limiting distribution. These results hold uniformly over the class of precision matrices with row sparsity of small order \(\sqrt{n}/\log p\) and spectrum uniformly bounded, under a sub-Gaussian tail assumption on the margins of the true underlying distribution. Consequently, our results lead to uniformly valid confidence regions for low-dimensional parameters of the precision matrix. Thresholding the estimator leads to variable selection without imposing irrepresentability conditions. The performance of the method is demonstrated in a simulation study and on real data.
This is a preview of subscription content, log in to check access.


References
Belloni A, Chernozhukov V, Hansen C (2014) Inference on treatment effects after selection amongst high-dimensional controls. Rev Econ Stud 81(2):608–650
Belloni A, Chernozhukov V, Wang L (2011) Square-root Lasso: Pivotal recovery of sparse signals via conic programming. Biometrika 98(4):791–806
Bickel PJ, Klaassen CA, Ritov Y, Wellner JA (1993) Efficient and adaptive estimation for semiparametric models. Springer, New York
Bickel PJ, Levina E (2008) Covariance regularization by thresholding. Ann Statist 36(6):2577–2604
Bühlmann P, van de Geer S (2011) Statistics for high-dimensional data. Springer, New York
Cai T, Liu W, Luo X (2011) A constrained l1 minimization approach to sparse precision matrix estimation. J Am Statist Assoc 106:594–607
Candes E, Tao T (2007) The dantzig selector: statistical estimation when p is much larger than n. Ann Statist 35(6):2313–2351
Chatterjee A, Lahiri SN (2011) Bootstrapping lasso estimators. J Am Statist Assoc 106(494):608–625
Chatterjee A, Lahiri SN (2013) Rates of convergence of the adaptive LASSO estimators to the oracle distribution and higher order refinements by the bootstrap. Ann Statist 41(3)
Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Statist 32(2):407–451
Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9:432–441
Janková J, van de Geer S (2015) Confidence intervals for high-dimensional inverse covariance estimation. Electron J Statist 9:1205–1229
Javanmard A, Montanari A (2013) Model selection for high-dimensional regression under the generalized irrepresentability condition. In: Burges C, Bottou L, Welling M, Ghahramani Z, Weinberger K (eds) Advances in neural information processing systems 26:3012–3020
Javanmard A, Montanari A (2014) Confidence intervals and hypothesis testing for high-dimensional regression. J Mach Learn Res 15(1):2869–2909
Knight K, Fu W (2000) Asymptotics for lasso-type estimators. Ann Statist 28(5):1356–1378
Lauritzen SL (1996) Graphical models. Clarendon Press, Oxford
Li KC (1989) Honest confidence regions for nonparametric regression. Ann Statist 17(3):1001–1008
Mazumder R, Hastie T (2012) The Graphical Lasso: New Insights and Alternatives. Electron J Statist, pp 2125–2149
Meinshausen N, Bühlmann P (2006) High-dimensional graphs and variable selection with the lasso. Ann Statist 34(3):1436–1462
Ng B, Varoquaux G, P J-B, Thirion B (2013) A novel sparse group gaussian graphical model for functional connectivity estimation. Information Processing in Medical Imaging
Ravikumar P, Raskutti G, Wainwright MJ, Yu B (2008) High-dimensional covariance estimation by minimizing l1-penalized log-determinant divergence. Electron J Statist 5:935–980
Ren Z, Sun T, Zhang C-H, Zhou HH (2015) Asymptotic normality and optimalities in estimation of large gaussian graphical models. Ann Statist 43(3):991–1026
Rothman AJ, Bickel PJ, Levina E, Zhu J (2008) Sparse permutation invariant covariance estimation. Electron J Statist 2:494–515
Sun T, Zhang C-H (2012) Sparse matrix inversion with scaled Lasso. J Mach Learn Res 14:3385–3418
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol 58:267–288
van de Geer S (2016) Worst possible sub-directions in high-dimensional models. J Multi Anal 146:248–260
van de Geer S, Bühlmann P, Ritov Y, Dezeure R (2013) On asymptotically optimal confidence regions and tests for high-dimensional models. Ann Statist 42(3):1166–1202
van der Vaart A (2000) Asymptotic statistics. Cambridge University Press, Cambridge
Yuan M (2010) High dimensional inverse covariance matrix estimation via linear programming. J Mach Learn Res 11:2261–2286
Yuan M, Lin Y (2007) Model selection and estimation in the gaussian graphical model. Biometrika, page 117
Zhang C-H, Zhang SS (2014) Confidence intervals for low-dimensional parameters in high-dimensional linear models. J R Stat Soc Ser B Stat Methodol 76:217–242
Author information
Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Janková, J., van de Geer, S. Honest confidence regions and optimality in high-dimensional precision matrix estimation. TEST 26, 143–162 (2017). https://doi.org/10.1007/s11749-016-0503-5
Received:
Accepted:
Published:
Issue Date:
Keywords
- Precision matrix
- Sparsity
- Inference
- Asymptotic normality
- Confidence regions
Mathematics Subject Classification
- 62J07
- 62F12