TEST

, Volume 25, Issue 3, pp 570–590 | Cite as

Nonparametric density and survival function estimation in the multiplicative censoring model

  • Elodie Brunel
  • Fabienne Comte
  • Valentine Genon-Catalot
Original Paper

Abstract

Consider the multiplicative censoring model given by \(Y_i=X_iU_i\), \(i=1, \ldots ,n\) where \((X_i)\) are i.i.d. with unknown density f on \({\mathbb {R}}\), \((U_i)\) are i.i.d. with uniform distribution \({\mathcal {U}}([0,1])\) and \((U_i)\) and \((X_i)\) are independent sequences. Only the sample \((Y_i)\) is observed. We study nonparametric estimators of both the density f and the corresponding survival function \(\bar{F}\). First, kernel estimators are built. Pointwise risk bounds for the quadratic risk are given, and upper and lower bounds for the rates in this setting are provided. Then, in a global setting, a data-driven bandwidth selection procedure is proposed. The resulting estimator has been proved to be adaptive in the sense that its risk automatically realizes the bias-variance compromise. Second, when the \(X_i\)s are nonnegative, using kernels fitted for \({\mathbb {R}}^+\)-supported functions, we propose new estimators of the survival function which are also adaptive. By simulation experiments, we check the good performances of the estimators and compare the two strategies.

Keywords

Adaptive procedure Bandwidth selection Kernel estimators Multiplicative censoring model 

Mathematics Subject Classification

62G07 62N01 

Supplementary material

11749_2016_479_MOESM1_ESM.pdf (188 kb)
Supplementary material 1 (pdf 187 KB)

References

  1. Abbaszadeh M, Chesneau C, Doosti H (2013) Multiplicative censoring: estimation of a density and its derivatives under the Lp-risk. REVSTAT 11:255–276MathSciNetMATHGoogle Scholar
  2. Abbaszadeh M, Chesneau C, Doosti H (2012) Nonparametric estimation of density under bias and multiplicative censoring via wavelet methods. Stat Probab Lett 82:932–941MathSciNetCrossRefMATHGoogle Scholar
  3. Asgharian M, Carone M, Fakoor V (2012) Large-sample study of the kernel density estimators under multiplicative censoring. Ann Stat 40:159–187MathSciNetCrossRefMATHGoogle Scholar
  4. Andersen KE, Hansen MB (2001) Multiplicative censoring: density estimation by a series expansion approach. J Stat Plann Inference 98:137–155MathSciNetCrossRefMATHGoogle Scholar
  5. Chesneau C (2013) Wavelet estimation of a density in a GARCH-type model. Commun Stat Theory Methods 42:98–117MathSciNetCrossRefMATHGoogle Scholar
  6. Chernozhukov V, Fernandez-Val I, Galichon A (2009) Improving point and interval estimators of monotone functions by rearrangement. Biometrika 96:559–575MathSciNetCrossRefMATHGoogle Scholar
  7. Comte F, Genon-Catalot V (2012) Convolution power kernels for density estimation. J Stat Plann Inference 142:1698–1715MathSciNetCrossRefMATHGoogle Scholar
  8. Fritsch FN, Carlson RE (1980) Monotone piecewise cubic interpolation. SIAM J Numer Anal 17:238–246MathSciNetCrossRefMATHGoogle Scholar
  9. Goldenshluger A, Lepski O (2011) Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality. Ann Stat 39(3):1608–1632MathSciNetCrossRefMATHGoogle Scholar
  10. Tsybakov AB (2009) Introduction to nonparametric estimation. Revised and extended from the 2004 French original. Springer Series in Statistics. Springer, New York 1970Google Scholar
  11. van Es B, Klaassen CAJ, Oudshoorn K (2000) Survival analysis under cross-sectional sampling: length bias and multiplicative censoring. Prague Workshop on Perspectives in Modern Statistical Inference: Parametrics, Semi-parametrics, Non-parametrics (1998). J Stat Plann Inference 91:295–312Google Scholar
  12. Vardi Y (1989) Multiplicative censoring, renewal processes, deconvolution and decreasing density: nonparametric estimation. Biometrika 76:751–761MathSciNetCrossRefMATHGoogle Scholar
  13. Vardi Y, Zhang C-H (1992) Large sample study of empirical distributions in a random-multiplicative censoring model. Ann Stat 20:1022–1039MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2016

Authors and Affiliations

  • Elodie Brunel
    • 1
  • Fabienne Comte
    • 2
  • Valentine Genon-Catalot
    • 2
  1. 1.Université Montpellier, I3M UMR CNRS 5149MontpellierFrance
  2. 2.Université Paris Descartes, MAP5, UMR CNRS 8145ParisFrance

Personalised recommendations