Spatio-temporal circular models with non-separable covariance structure

Abstract

Circular data arise in many areas of application. Recently, there has been interest in looking at circular data collected separately over time and over space. Here, we extend some of this work to the spatio-temporal setting, introducing space–time dependence. We accommodate covariates, implement full kriging and forecasting, and also allow for a nugget which can be time dependent. We work within a Bayesian framework, introducing suitable latent variables to facilitate Markov chain Monte Carlo model fitting. The Bayesian framework enables us to implement full inference, obtaining predictive distributions for kriging and forecasting. We offer comparison between the less flexible but more interpretable wrapped Gaussian process and the more flexible but less interpretable projected Gaussian process. We do this illustratively using both simulated data and data from computer model output for wave directions in the Adriatic Sea off the coast of Italy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Banerjee S, Gelfand AE, Carlin BP (2014) Hierarchical modeling and analysis for spatial data, 2nd edn. Chapman and Hall/CRC, New York

    Google Scholar 

  2. Breckling J (1989) The analysis of directional time series: applications to wind speed and directions. Lecture notes in statistics. Springer-Verlag, Berlin

  3. Bulla J, Lagona F, Maruotti A, Picone M (2012) A multivariate hidden Markov model for the identification of sea regimes from incomplete skewed and circular time series. J Agric Biol Environ Stat 17:544–567

    Article  MATH  MathSciNet  Google Scholar 

  4. Coles S (1998) Inference for circular distributions and processes. Stat Comput 8:105–113

    Article  Google Scholar 

  5. Damien P, Walker S (1999) A full Bayesian analysis of circular data using the von Mises distribution. Can J Stat 27:291–298

    Article  MATH  Google Scholar 

  6. Fisher NI (1996) Statistical analysis of circular data. Cambridge University Press, Cambridge

    Google Scholar 

  7. Fisher NI, Lee AJ (1992) Regression models for an angular response. Biometrics 48:665–677

    Article  MathSciNet  Google Scholar 

  8. Gneiting T (2002) Nonseparable, stationary covariance functions for space-time data. J Am Stat Assoc 97:590–600

    Article  MATH  MathSciNet  Google Scholar 

  9. Grimit EP, Gneiting T, Berrocal VJ, Johnson NA (2006) The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification. Q J R Meteorol Soc 132:2925–2942

    Article  Google Scholar 

  10. Guttorp P, Lockhart RA (1988) Finding the location of a signal: a Bayesian analysis. J Am Stat Assoc 83:322–330

    Article  MathSciNet  Google Scholar 

  11. Harrison D, Kanji GK (1988) The development of analysis of variance for circular data. J Appl Stat 15:197–224

    Article  Google Scholar 

  12. Holtzman H, Munk A, Suster M, Zucchini W (2006) Hidden Markov models for circular and linear-circular time series. Environ Ecol Stat 13:325–347

    Article  MathSciNet  Google Scholar 

  13. Jammalamadaka SR, SenGupta A (2001) Topics in circular statistics. World Scientific, Singapore

    Google Scholar 

  14. Johnson RA, Wehrly TE (1978) Some angular-linear distributions and related regression models. J Am Stat Assoc 73:602–606

    Article  MATH  MathSciNet  Google Scholar 

  15. Jona Lasinio G, Gelfand AE, Jona Lasinio M (2012) Spatial analysis of wave direction data using wrapped Gaussian processes. Ann Appl Stat 6:1478–1498

    Article  MATH  MathSciNet  Google Scholar 

  16. Kato S (2010) A Markov process for circular data. J R Stat Soc Ser B 72:655–672

    Article  MathSciNet  Google Scholar 

  17. Kato S, Shimizu K (2008) Dependent models for observations which include angular ones. J Stat Plan Infer 138:3538–3549

    Article  MATH  MathSciNet  Google Scholar 

  18. Lagona F, Picone M (2011) A latent-class model for clustering incomplete linear and circular data in marine studies. J Data Sci 9:585–605

    MathSciNet  Google Scholar 

  19. Lee A (2010) Circular data. Wiley Interdiscip Rev Comput Stat 2:477–486

    Article  Google Scholar 

  20. Mardia KV (1972) Statistics of directional data. Academic Press, London

    Google Scholar 

  21. Mardia KV, Jupp PE (1999) Directional statistics. Wiley, Chichester

    Google Scholar 

  22. Mastrantonio G, Maruotti A, Jona Lasinio G (2015) Bayesian hidden Markov modelling using circular-linear general projected normal distribution. Environmetrics 26:145–158

    Article  MathSciNet  Google Scholar 

  23. Ravindran P, Ghosh SK (2011) Bayesian analysis of circular data using wrapped distributions. Stat Sin 5:547–561

    MathSciNet  Google Scholar 

  24. Speranza A, Accadia C, Casaioli M, Mariani S, Monacelli G, Inghilesi R, Tartaglione N, Ruti PM, Carillo A, Bargagli A, Pisacane G, Valentinotti F, Lavagnini A (2004) Poseidon: an integrated system for analysis and forecast of hydrological, meteorological and surface marine fields in the Mediterranean area. Nuovo Cimento 27:329–345

    Google Scholar 

  25. Speranza A, Accadia C, Mariani S, Casaioli M, Tartaglione N, Monacelli G, Ruti PM, Lavagnini A (2007) Simm: an integrated forecasting system for the Mediterranean area. Meteorol Appl 14:337–350

    Article  Google Scholar 

  26. Wang F, Gelfand AE (2013) Directional data analysis under the general projected normal distribution. Stat Methodol 10:113–127

    Article  MathSciNet  Google Scholar 

  27. Wang F, Gelfand AE (2014) Modeling space and space–time directional data using projected Gaussian processes. J Am Stat Assoc 109:1565–1580

    Article  MathSciNet  Google Scholar 

  28. Wang F, Gelfand AE, Jona Lasinio G (2015) Joint spatio-temporal analysis of a linear and a directional variable: space–time modeling of wave heights and wave directions in the Adriatic Sea. Stat Sin 25:25–39

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank INFN Bari CED for allowing the use of their high-performance grid computing infrastructure Bc2S. The authors thank ISPRA for the use of data output from the wave model of its SIMM hydro-meteo-marine forecasting system.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gianluca Mastrantonio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 274 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mastrantonio, G., Jona Lasinio, G. & Gelfand, A.E. Spatio-temporal circular models with non-separable covariance structure. TEST 25, 331–350 (2016). https://doi.org/10.1007/s11749-015-0458-y

Download citation

Keywords

  • Average prediction error
  • Continuous ranked probability score
  • Kriging
  • Markov chain Monte Carlo
  • Projected distribution
  • Wrapped distribution