, Volume 22, Issue 4, pp 549–579 | Cite as

Estimating the upcrossings index

  • J. R. Sebastião
  • A. P. Martins
  • H. Ferreira
  • L. Pereira
Original Paper


For stationary sequences, under general dependence restrictions, any limiting point process for time normalized upcrossings of high levels is a compound Poisson process, i.e., there is a clustering of high upcrossings, where the underlying Poisson points represent cluster positions and the multiplicities correspond to cluster sizes. For such classes of stationary sequences, there exists the upcrossings index η, 0≤η≤1, which is directly related to the extremal index θ, 0≤θ≤1, for suitable high levels. In this paper, we consider the problem of estimating the upcrossings index η for a class of stationary sequences satisfying a mild oscillation restriction. For the proposed estimator, properties such as consistency and asymptotic normality are studied. Finally, the performance of the estimator is assessed through simulation studies for autoregressive processes and case studies in the fields of environment and finance. Comparisons with other estimators derived from well known estimators of the extremal index are also presented.


Upcrossings index Local dependence conditions Consistency and asymptotic normality 

Mathematics Subject Classification (2000)




We are grateful to the anonymous referees for their valuable criticisms, corrections and suggestions which helped considerably the final form of this paper.

We acknowledge the support from research unit “Centro de Matemática” of the University of Beira Interior, the research project PTDC/MAT/108575/2008 through the Foundation for Science and Technology (FCT) co-financed by FEDER/COMPETE and SFRH/BD/41439/2007.


  1. Carlstein E (1986) The use of subseries values for estimating the variance of a general statistic from a stationary sequence. Ann Stat 14:1171–1179 MathSciNetCrossRefzbMATHGoogle Scholar
  2. Chernick M, Hsing T, McCormick W (1991) Calculating the extremal index for a class of stationary sequences. Adv Appl Probab 23:835–850 MathSciNetCrossRefzbMATHGoogle Scholar
  3. Drees H (2011) Bias correction for estimators of the extremal index. arXiv:1107.0935v1
  4. Ferreira H (2006) The upcrossing index and the extremal index. J Appl Probab 43:927–937 MathSciNetCrossRefzbMATHGoogle Scholar
  5. Ferreira H (2007) Runs of high values and the upcrossings index for a stationary sequence. In: Proceedings of the 56th session of the ISI Google Scholar
  6. Ferreira M, Ferreira H (2012) On extremal dependence: some contributions. Test 21(3):566–583 MathSciNetCrossRefzbMATHGoogle Scholar
  7. Ferro CAT, Segers J (2002) Automatic declustering of extreme values via an estimator for the extremal index. Technical Report 2002-025. EURANDOM Eindhoven
  8. Ferro CAT, Segers J (2003) Inference for clusters of extreme values. J R Stat Soc B 65:545–556 MathSciNetCrossRefzbMATHGoogle Scholar
  9. Gomes MI, Oliveira O (2001) The bootstrap methodology in statistics of extremes—choice of the optimal sample fraction. Extremes 4(4):331–358 MathSciNetCrossRefzbMATHGoogle Scholar
  10. Gomes MI, Hall A, Miranda C (2008) Subsampling techniques and the jackknife methodology in the estimation of the extremal index. J Stat Comput Simul 52:2022–2041 MathSciNetzbMATHGoogle Scholar
  11. Hsing T (1991) Estimating the parameters of rare events. Stoch Process Appl 37:117–139 MathSciNetCrossRefzbMATHGoogle Scholar
  12. Hsing T (1993) Extremal index estimation for a weakly dependent stationary sequence. Ann Stat 21:2043–2071 MathSciNetCrossRefzbMATHGoogle Scholar
  13. Hsing T, Hüsler J, Leadbetter MR (1988) On the exceedance point process for a stationary sequence. Probab Theory Relat Fields 78:97–112 CrossRefzbMATHGoogle Scholar
  14. Klar B, Lindner F, Meintanis SG (2011) Specification tests for the error distribution in Garch models. Comput Stat Data Anal. doi: 10.1016/j.csda.2010.05.029 zbMATHGoogle Scholar
  15. Künsch H (1989) The jackknife and the bootstrap for general stationary observations. Ann Math 17(3):1217–1241 zbMATHGoogle Scholar
  16. Lahiri SN (2003) Resampling methods for dependent data. Springer, Berlin CrossRefzbMATHGoogle Scholar
  17. Laurini F, Tawn J (2006) The extremal index for GARCH(1, 1) processes with t-distributed innovations.
  18. Leadbetter MR (1983) Extremes and local dependence in stationary processes. Z Wahrscheinlichkeitstheor Verw Geb 65:291–306 MathSciNetCrossRefzbMATHGoogle Scholar
  19. Leadbetter MR, Nandagopalan S (1988) On exceedance point process for stationary sequences under mild oscillation restrictions. In: Hüsler J, Reiss D (eds) Extreme value theory: proceedings, Oberwolfach 1987. Springer, New York, pp 69–80 Google Scholar
  20. Liu RY, Singh K (1992) Moving blocks jackknife and bootstrap capture weak dependence. In: Lepage R, Billard L (eds) Exploring the limits of bootstrap. Wiley, New York, pp 225–248 Google Scholar
  21. Mikosch T, Stărică C (2000) Limit theory for the sample autocorrelations and extremes of a GARCH(1, 1) process. Ann Stat 28:1427–1451 CrossRefzbMATHGoogle Scholar
  22. Nandagopalan S (1990) Multivariate extremes and estimation of the extremal index. Ph.D. Thesis, University of North Carolina, Chapel Hill Google Scholar
  23. Politis DN, Romano JP (1992) A circular block resampling procedure for stationary data. In: Lepage R, Billard L (eds) Exploring the limits of bootstrap. Wiley, New York, pp 263–270 Google Scholar
  24. Politis DN, Romano JP (1994) The stationary bootstrap. J Am Stat Assoc 89:1303–1313 MathSciNetCrossRefzbMATHGoogle Scholar
  25. Reiss R-D, Thomas M (2007) Statistical analysis of extreme values with applications to insurance, finance, hydrology and other fields. Birkhäuser, Basel zbMATHGoogle Scholar
  26. Robert CY (2009) Inference for the limiting cluster size distribution of extreme values. Ann Stat 37:271–310 CrossRefzbMATHGoogle Scholar
  27. Robert CY, Segers J, Ferro C (2009) A sliding blocks estimator for the extremal index. Electron J Stat 3:993–1020 MathSciNetCrossRefzbMATHGoogle Scholar
  28. Sebastião J, Martins AP, Pereira L, Ferreira H (2010) Clustering of upcrossings of high values. J Stat Plan Inference 140:1003–1012 CrossRefzbMATHGoogle Scholar
  29. Singh K (1981) On the asymptotic accuracy of the Efron’s bootstrap. Ann Stat 9:345–362 Google Scholar
  30. Süveges M (2007) Likelihood estimation of the extremal index. Extremes 10:41–55 MathSciNetCrossRefzbMATHGoogle Scholar
  31. Süveges M, Davison A (2010) Model misspecification in peaks over threshold analysis. Ann Appl Stat 4:203–221 MathSciNetCrossRefzbMATHGoogle Scholar
  32. Weissman I, Novak SY (1998) On blocks and runs estimators of the extremal index. J Stat Plan Inference 66(2):281–288 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2013

Authors and Affiliations

  • J. R. Sebastião
    • 1
  • A. P. Martins
    • 2
  • H. Ferreira
    • 2
  • L. Pereira
    • 2
  1. 1.Escola Superior de GestãoInstituto Politécnico de Castelo BrancoCastelo BrancoPortugal
  2. 2.Departamento de MatemáticaUniversidade da Beira InteriorCovilhãPortugal

Personalised recommendations