, Volume 21, Issue 3, pp 566–583 | Cite as

On extremal dependence: some contributions

Original Paper


The usual coefficients of tail dependence are based on exceedances of high values. These extremal events are useful and widely used in literature but an adverse situation may also occur with the upcrossing of a high level. In this context we define upcrossings-tail dependence coefficients and analyze all types of dependence coming out. We will prove that these coefficients are related to multivariate tail dependence coefficients already known in literature. We shall see that the upcrossings-tail dependence coefficients have the interesting feature of congregating both “temporal” and “spatial” dependence.

The coefficients of tail dependence can also be applied to stationary sequences and hence measure the tail dependence in time. Results concerning connections with the extremal index and the upcrossings index as well as with local dependence conditions will be stated. Several illustrative examples will be exploited and a small note on inference will be given by presenting estimators derived from the stated results and respective properties.


Extreme values Measures of tail dependence Asymptotic independence 

Mathematics Subject Classification (2000)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpuim MT (1989) An extremal markovian sequence. J Appl Probab 26:219–232 MathSciNetMATHCrossRefGoogle Scholar
  2. Ancona-Navarrete MA, Tawn JA (2000) A comparison of methods for estimating the extremal index. Extremes 3:5–38 MathSciNetMATHCrossRefGoogle Scholar
  3. Billingsley P (1968) Convergence of probability measures. Wiley, New York MATHGoogle Scholar
  4. Canto e Castro L (1992) Sobre a teoria assintótica de extremos. PhD thesis, FCUL Google Scholar
  5. Coles S, Heffernan J, Tawn JA (1999) Dependence measures for extreme value analyses. Extremes 2:339–365 MATHCrossRefGoogle Scholar
  6. Chernick MR, Hsing T, McCormick WP (1991) Calculating the extremal index for a class of stationary sequences. Adv Appl Probab 23:835–850 MathSciNetMATHCrossRefGoogle Scholar
  7. Draisma G (2001) Duration of extremes at sea. In: Parametric and semi-parametric methods in E.V.T. PhD thesis, Erasmus University, pp 137–143 Google Scholar
  8. Draisma G, Drees H, Ferreira A, de Haan L (2004) Bivariate tail estimation: dependence in asymptotic independence. Bernoulli 10:251–280 MathSciNetMATHCrossRefGoogle Scholar
  9. Drees H (2003) Extreme quantile estimation for dependent data with applications to finance. Bernoulli 9:617–657 MathSciNetMATHCrossRefGoogle Scholar
  10. Ferreira H (2006) The upcrossings index and the extremal index. J Appl Probab 43(4):927–937 MathSciNetMATHCrossRefGoogle Scholar
  11. Ferreira H (2011a) Dependence between two multivariate extremes. Stat Probab Lett 81(5):586–591 MATHCrossRefGoogle Scholar
  12. Ferreira M (2011b, submitted) On tail dependence: a characterization for first order max-autoregressive processes. In: Notes and communications of CEAUL, 09/11 Google Scholar
  13. Ferreira M, Canto e Castro L (2008) Tail and dependence behaviour of levels that persist for a fixed period of time. Extremes 11:113–133 MathSciNetMATHCrossRefGoogle Scholar
  14. Frahm G, Junker M, Schmidt R (2005) Estimating the tail-dependence coefficient: properties and pitfalls. Insur Math Econ 37:80–100 MathSciNetMATHCrossRefGoogle Scholar
  15. Heffernan JE, Tawn JA, Zhang Z (2007) Asymptotically (in)dependent multivariate maxima of moving maxima processes. Extremes 10:57–82 MathSciNetMATHCrossRefGoogle Scholar
  16. Leadbetter MR, Lindgren G, Rootzén H (1983) Extremes and related properties of random sequences and processes. Springer, New York MATHCrossRefGoogle Scholar
  17. Leadbetter MR, Nandagopalan S (1989) In: Hüsler J, Reiss R-D (eds) Extreme value theory on exceedance point processes for stationary sequences under mild oscillation restrictions. Springer, Berlin, pp 69–80 Google Scholar
  18. Ledford A, Tawn JA (1996) Statistics for near independence in multivariate extreme values. Biometrika 83:169–187 MathSciNetMATHCrossRefGoogle Scholar
  19. Ledford A, Tawn JA (1997) Modelling Dependence within joint tail regions. J R Stat Soc B 59:475–499 MathSciNetMATHCrossRefGoogle Scholar
  20. Peng L (1999) Estimation of the coefficient of the tail dependence in bivariate extremes. Stat Probab Lett 43:399–409 MATHCrossRefGoogle Scholar
  21. Schmidt R, Stadtmüller U (2006) Nonparametric estimation of tail dependence. Scand J Stat 33:307–335 MATHCrossRefGoogle Scholar
  22. Sibuya M (1960) Bivariate extreme statistics. Ann Inst Stat Math 11:195–210 MathSciNetMATHCrossRefGoogle Scholar
  23. Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Research report, University of Paris, Institute of Statistics, France Google Scholar
  24. Tiago de Oliveira J (1962/63) Structure theory of bivariate extremes, extensions. Est. Mat., Estat. e Econ. 7, 165–195 Google Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2011

Authors and Affiliations

  1. 1.DMAT-CMATU. MinhoBragaPortugal
  2. 2.Dep. Mat.U. Beira InteriorCovilhãPortugal

Personalised recommendations