A simple multiway ANOVA for functional data

Abstract

We propose a procedure to test complicated ANOVA designs for functional data. The procedure is effective, flexible, easy to compute and does not require a heavy computational effort. It is based on the analysis of randomly chosen one-dimensional projections. The paper contains some theoretical results as well as some simulations and the analysis of some real data sets. Functional data include multidimensional data, so the paper contains a comparison between the proposed procedure and some usual MANOVA tests.

This is a preview of subscription content, log in to check access.

References

  1. Abramovich F, Angelini C (2005) Testing in mixed-effects FANOVA models. J Stat Plan Inference 136:4326–4348

    Article  MathSciNet  Google Scholar 

  2. Abramovich F, Antoniadis A, Sapatinas T, Vidakovic B (2004) Optimal testing in a fixed-effects functional analysis of variance model. Int J Wavelets Multiresolut Inf Process 2:323–349

    MATH  Article  MathSciNet  Google Scholar 

  3. Angelini C, Vidakovic B (2002) Some novel methods in wavelet data analysis: Wavelet ANOVA, F-test shrinkage and Γ-minimax wavelet shrinkage. Istituto per le Applicazioni del Calcolo “Mauro Picone.” Rapporti Tecnici RT 256/02

  4. Antoniadis A, Sapatinas T (2007) Estimation and inference in functional mixed-effects models. Comput Stat Data Anal 51:4793–4813

    MATH  Article  MathSciNet  Google Scholar 

  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    MATH  MathSciNet  Google Scholar 

  6. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    MATH  Article  MathSciNet  Google Scholar 

  7. Brumback BA, Rice JA (1998) Smoothing spline models for the analysis of nested and crossed samples of curves. J Am Stat Assoc 93:961–994

    MATH  Article  MathSciNet  Google Scholar 

  8. Brunner E, Dette H, Munk A (1997) Box-type approximations in nonparametric factorial designs. J Am Stat Assoc 92:1494–1502

    MATH  Article  MathSciNet  Google Scholar 

  9. Cuesta-Albertos JA, Nieto-Reyes A (2007) An infinite dimensional depth: The random Tukey depth. Technical Report

  10. Cuesta-Albertos JA, Nieto-Reyes A (2008) The random Tukey depth. Comput Stat Data Anal 52:4979–4988

    MATH  Article  MathSciNet  Google Scholar 

  11. Cuesta-Albertos JA, del Barrio T, Fraiman R, Matrán C (2007a) The random projection method in goodness of fit for functional data. Comput Stat Data Anal 51:4814–4831

    MATH  Article  Google Scholar 

  12. Cuesta-Albertos JA, Fraiman R, Galves A, García J, Svarc M (2007b) Identifying rhythmic classes of languages using their sonority: a Kolmogorov–Smirnov approach. J Appl Stat 34:749–761

    Article  MathSciNet  Google Scholar 

  13. Cuesta-Albertos JA, Fraiman R, Ransford T (2007c) A sharp form of the Cramér–Wold theorem. J Theor Probab 20:201–209

    MATH  Article  MathSciNet  Google Scholar 

  14. Cuesta-Albertos JA, Cuevas A, Fraiman R (2008) On projection-based tests for spherical and compositional data. Stat Comput 19:367–380

    Article  Google Scholar 

  15. Cuevas A, Fraiman R (2009) On depth measures and dual statistics. A methodology for dealing with general data. J Multivar Anal 100:753–766

    MATH  Article  MathSciNet  Google Scholar 

  16. Cuevas A, Febrero M, Fraiman R (2004) An ANOVA test for functional data. Comput Stat Data Anal 47:111–122

    MATH  Article  MathSciNet  Google Scholar 

  17. Fan J (1996) Tests of significance based on wavelet thresholding and Neyman’s truncation. J Am Stat Assoc 91:674–688

    MATH  Article  Google Scholar 

  18. Fan J, Lin SK (1998) Test of significance when data are curves. J Am Stat Assoc 93:254–261

    MathSciNet  Google Scholar 

  19. Faraway JJ (1997) Regression analysis for a functional response. J R Stat Soc B 64:887–898

    Google Scholar 

  20. Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer series in statistics. Springer, New York

    Google Scholar 

  21. Ferraty F, Vieu P, Viguier-Pla S (2007) Factor-based comparison of groups of curves. Comput Stat Data Anal 51:4903–4910

    MATH  Article  MathSciNet  Google Scholar 

  22. Fujikoshi Y, Himeno T, Wakaki H (2004) Asymptotic results of a high dimensional MANOVA and power comparisons when the dimension is large compared to the sample size. J Jpn Stat Soc 34:19–26

    MATH  MathSciNet  Google Scholar 

  23. Gu C (2002) Smoothing spline ANOVA models. Springer, New York

    Google Scholar 

  24. Guo W (2002) Inference in smoothing spline analysis of variance. J R Stat Soc B 64:887–898

    MATH  Article  Google Scholar 

  25. Krzanowski WJ (1988) Principles of multivariate analysis. A user’s perspective. Oxford University Press, Oxford

    Google Scholar 

  26. R Development Core Team (2007) R: a language and environment for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org

  27. Ramsay JO, Silverman BW (2002) Applied functional data analysis. Methods and case studies. Springer, New York

    Google Scholar 

  28. Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York

    Google Scholar 

  29. Schott JR (2007) Some high-dimensional tests for a one-way ANOVA. J Multivar Anal 98:1825–1839

    MATH  Article  MathSciNet  Google Scholar 

  30. Shohat JA, Tamarkin JD (1963) The problem of moments. American Mathematical Society, Providence

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Febrero-Bande.

Additional information

J.A. Cuesta-Albertos has been partially supported by the Spanish Ministerio de Ciencia y Tecnología, grant MTM2008-0607-C02-02 and the Consejería de Educación y Cultura de la Junta de Castilla y León, grant PAPIJCL VA102/06.

M. Febrero-Bande has been partially supported by the Spanish Ministerio de Ciencia y Tecnología, grant MTM2008-03010.

Communicated by Domingo Morales.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cuesta-Albertos, J.A., Febrero-Bande, M. A simple multiway ANOVA for functional data. TEST 19, 537–557 (2010). https://doi.org/10.1007/s11749-010-0185-3

Download citation

Keywords

  • ANOVA
  • Functional data
  • Random projections
  • Testing
  • Two-way ANOVA

Mathematics Subject Classification (2000)

  • 62H15
  • 62J10