Advertisement

TEST

, Volume 16, Issue 1, pp 123–144 | Cite as

Bootstrap tests for nonparametric comparison of regression curves with dependent errors

  • J. M. Vilar-FernándezEmail author
  • J. A. Vilar-Fernández
  • W. González-Manteiga
Original Paper

Abstract

In this paper, the problem of testing the equality of regression curves with dependent data is studied. Several methods based on nonparametric estimators of the regression function are described. In this setting, the distribution of the test statistic is frequently unknown or difficult to compute, so an approximate test based on the asymptotic distribution of the statistic can be considered. Nevertheless, the asymptotic properties of the methods proposed in this work have been obtained under independence of the observations, and just one of these methods was studied in a context of dependence as reported by Vilar-Fernández and González-Manteiga (Statistics 58(2):81–99, 2003). In addition, the distribution of these test statistics converges to the limit distribution with convergence rates usually rather slow, so that the approximations obtained for reasonable sample sizes are not satisfactory. For these reasons, many authors have suggested the use of bootstrap algorithms as an alternative approach. Our main concern is to compare the behavior of three bootstrap procedures that take into account the dependence assumption of the observations when they are used to approximate the distribution of the test statistics considered. A broad simulation study is carried out to observe the finite sample performance of the analyzed bootstrap tests.

Keywords

Hypothesis testing Regression models Nonparametric estimators Dependent data 

Mathematics Subject Classification (2000)

62G08 62G09 62G10 62M10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berkowitz J, Kilian L (2000) Recent developments in bootstrapping time series. Econ Rev 19:1–48 zbMATHMathSciNetCrossRefGoogle Scholar
  2. Cao R (1999) An overview of bootstrap methods for estimating and predicting in time series. Test 8(1):95–116 zbMATHCrossRefMathSciNetGoogle Scholar
  3. Davidson R, MacKinnon JG (1986) Graphical methods for investigating the size and power of hypothesis tests. Manch Sch 66:1–26 CrossRefGoogle Scholar
  4. Delgado MA (1993) Testing the equality of non-parametric regression curves. Stat Probab Lett 17:199–204 zbMATHCrossRefMathSciNetGoogle Scholar
  5. Delicado P, Placencia I (2001) Comparing empirical distributions of p-values from simulations. Commun Stat Simul Comput 30(2):403–422 zbMATHCrossRefMathSciNetGoogle Scholar
  6. Dette H, Neumeyer N (2001) Nonparametric analysis of covariance. Ann Stat 29(5):1361–1400 zbMATHCrossRefMathSciNetGoogle Scholar
  7. Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman & Hall, London zbMATHGoogle Scholar
  8. Hall P, Hart JD (1990) Bootstrap test for difference between means in nonparametric regression. J Am Stat Assoc 412(85):1039–1049 CrossRefMathSciNetGoogle Scholar
  9. Hall P, Huber C, Speckman PL (1997) Covariate-matched one-sided tests for the difference between functional means. J Am Stat Assoc 439(92):1074–1083 CrossRefMathSciNetGoogle Scholar
  10. Hall P, Marron JS (1990) On variance estimation in nonparametric regression. Biometrika 77:415–419 zbMATHCrossRefMathSciNetGoogle Scholar
  11. Härdle W, Horowitz J, Kreiss JP (2003) Bootstrap methods for time series. Int Stat Rev 71(2):435–460 zbMATHGoogle Scholar
  12. Härdle W, Mammen E (1993) Comparing nonparametric versus parametric regression fits. Ann Stat 21:1926–1947 zbMATHGoogle Scholar
  13. Härdle W, Marron JS (1990) Semiparametric comparison of regression curves. Ann Stat 18:63–89 zbMATHGoogle Scholar
  14. King EC, Hart JD, Wehrly TE (1991) Testing the equality of two regression curves using linear smoothers. Stat Probab Lett 12(3):239–247 CrossRefMathSciNetGoogle Scholar
  15. Koul HL, Schick A (1997) Testing for the equality of two nonparametric regression curves. J Stat Plan Inference 65:293–314 zbMATHCrossRefMathSciNetGoogle Scholar
  16. Kulasekera KB (1995) Comparison of regression curves using quasi-residuals. J Am Stat Assoc 431(90):1085–1093 CrossRefMathSciNetGoogle Scholar
  17. Kulasekera KB, Wang J (1997) Smoothing parameter selection for power optimality in testing of regression curves. J Am Stat Assoc 438(92):500–511 CrossRefMathSciNetGoogle Scholar
  18. Kulasekera KB, Wang J (1998) Bandwidth selection for power optimality in a test of equality of regression curves. Stat Probab Lett 37:287–293 CrossRefMathSciNetGoogle Scholar
  19. Künsch HR (1989) The jackknife and the bootstrap for general stationary observations. Ann Stat 17:1217–1241 zbMATHGoogle Scholar
  20. Li H, Maddala G (1992) Moving blocks jackknife and bootstrap capture weak dependence. In: LePage R, Billard L (eds) Exploring the limits of bootstrap. Wiley, New York, pp 225–248 Google Scholar
  21. Li H, Maddala G (1996) Bootstrapping time series models. Econ Theory 15:115–195 zbMATHMathSciNetGoogle Scholar
  22. Munk A, Dette H (1998) Nonparametric comparison of several regression functions: exact and asymptotic theory. Ann Stat 26(6):2339–2368 zbMATHCrossRefMathSciNetGoogle Scholar
  23. Neumeyer N, Dette H (2003) Nonparametric comparison of regression curves: an empirical process approach. Ann Stat 31(3):880–920 zbMATHCrossRefMathSciNetGoogle Scholar
  24. Politis DN, Romano JR (1994) The stationary bootstrap. J Am Stat Assoc 89:1303–1313 zbMATHCrossRefMathSciNetGoogle Scholar
  25. Scheike TH (2000) Comparison of nonparametric regression functions through their cumulatives. Stat Probab Lett 46:21–32 zbMATHCrossRefMathSciNetGoogle Scholar
  26. Vilar-Fernández JM, González-Manteiga W (2000) Resampling for checking linear regression models via non-parametric regression estimation. Comput Stat Data Anal 35:211–231 zbMATHCrossRefGoogle Scholar
  27. Vilar-Fernández JM, González-Manteiga W (2003) Nonparametric comparison of curves with dependent errors. Statistics 38(2):81–99 CrossRefGoogle Scholar
  28. Young SG, Bowman AW (1995) Nonparametric analysis of covariance. Biometrics 51:920–931 zbMATHCrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2007

Authors and Affiliations

  • J. M. Vilar-Fernández
    • 1
    Email author
  • J. A. Vilar-Fernández
    • 1
  • W. González-Manteiga
    • 2
  1. 1.Departamento de Matemáticas, Facultad de InformáticaUniversidad de A CoruñaCoruñaSpain
  2. 2.Departamento de Estadística e I.O.Universidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations