Bronchoscopic navigation and tissue diagnosis

  • Tsukasa Ishiwata
  • Alexander Gregor
  • Terunaga Inage
  • Kazuhiro YasufukuEmail author
Current Topics Review Article


Diagnosis of early-stage lung cancer has become increasingly important as the detection of peripheral pulmonary lesions (PPLs) grows with widespread adoption of CT-based lung cancer screening. Although CT-guided transthoracic needle aspiration has been the standard diagnostic approach for PPLs, transbronchial sampling by bronchoscopy is often performed due to its reduced rate of adverse events. However, the diagnostic yield of conventional bronchoscopy is often poor. Various bronchoscopic technologies have emerged over recent years to address this limitation, including thin/ultrathin bronchoscopes, radial probe endobronchial ultrasound (RP-EBUS), virtual navigation bronchoscopy (VBN), electromagnetic navigation bronchoscopy (ENB), and robotic bronchoscopy. Bronchoscopic transparenchymal nodule access (BTPNA) and transbronchial access tool (TBAT) are novel techniques that leverage navigational bronchoscopic technologies to further improve access to lesions throughout the lung. The devices used for sampling tissue have similarly evolved, such as the introduction of cryobiopsy. These innovative bronchoscopic techniques allows higher diagnostic yield even in small PPLs. Given the complexity of these new techniques and technologies, it is important for physicians to understand their strengths and limitations.


Navigational bronchoscopy Virtual bronchoscopic navigation Electromagnetic navigation bronchoscopy Robotic bronchoscopy 


Compliance with ethical standards

Conflict of interest

Kazuhiro Yasufuku received research funding from Olympus Corporation and Zidan Medical Inc.


  1. 1.
    Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.CrossRefGoogle Scholar
  2. 2.
    Gould MK, Donington J, Lynch WR, et al. Evaluation of individuals with pulmonary nodules: when is it lung cancer? Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143:e93S–e120S.CrossRefGoogle Scholar
  3. 3.
    Ost DE, Ernst A, Lei X, et al. Diagnostic yield and complications of bronchoscopy for peripheral lung lesions. Results of the AQUIRE registry. Am J Respir Crit Care Med. 2016;193:68–77.CrossRefGoogle Scholar
  4. 4.
    Asano F, Shinagawa N, Ishida T, et al. Virtual bronchoscopic navigation combined with ultrathin bronchoscopy. A randomized clinical trial. Am J Respir Crit Care Med. 2013;188:327–33.CrossRefGoogle Scholar
  5. 5.
    Shinagawa N, Yamazaki K, Onodera Y, et al. CT-guided transbronchial biopsy using an ultrathin bronchoscope with virtual bronchoscopic navigation. Chest. 2004;125:1138–43.CrossRefGoogle Scholar
  6. 6.
    Oki M, Saka H, Kitagawa C, et al. Endobronchial ultrasound-guided transbronchial biopsy using novel thin bronchoscope for diagnosis of peripheral pulmonary lesions. J Thorac Oncol. 2009;4:1274–7.CrossRefGoogle Scholar
  7. 7.
    Oki M, Saka H, Ando M, et al. Ultrathin bronchoscopy with multimodal devices for peripheral pulmonary lesions. A randomized trial. Am J Respir Crit Care Med. 2015;192:468–76.CrossRefGoogle Scholar
  8. 8.
    Oki M, Saka H, Asano F, et al. Use of an ultrathin vs thin bronchoscope for peripheral pulmonary lesions: a randomized trial. Chest. 2019. Scholar
  9. 9.
    Oki M, Saka H, Kitagawa C, et al. Visceral pleural perforation in two cases of ultrathin bronchoscopy. Chest. 2005;127:2271–3.CrossRefGoogle Scholar
  10. 10.
    Izumo T, Sasada S, Chavez C, et al. Radial endobronchial ultrasound images for ground-glass opacity pulmonary lesions. Eur Respir J. 2015;45:1661–8.CrossRefGoogle Scholar
  11. 11.
    Steinfort DP, Khor YH, Manser RL, et al. Radial probe endobronchial ultrasound for the diagnosis of peripheral lung cancer: systematic review and meta-analysis. Eur Respir J. 2011;37:902–10.CrossRefGoogle Scholar
  12. 12.
    Memoli JSW, Nietert PJ, Silvestri GA. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest. 2012;142:385–93.CrossRefGoogle Scholar
  13. 13.
    Tay JH, Irving L, Antippa P, et al. Radial probe endobronchial ultrasound: factors influencing visualization yield of peripheral pulmonary lesions. Respirology. 2013;18:185–90.CrossRefGoogle Scholar
  14. 14.
    Kurimoto N, Miyazawa T, Okimasa S, et al. Endobronchial ultrasonography using a guide sheath increases the ability to diagnose peripheral pulmonary lesions endoscopically. Chest. 2004;126:959–65.CrossRefGoogle Scholar
  15. 15.
    Yamada N, Yamazaki K, Kurimoto N, et al. Factors related to diagnostic yield of transbronchial biopsy using endobronchial ultrasonography with a guide sheath in small peripheral pulmonary lesions. Chest. 2007;132:603–8.CrossRefGoogle Scholar
  16. 16.
    Chen A, Chenna P, Loiselle A, et al. Radial probe endobronchial ultrasound for peripheral pulmonary lesions. A 5-year institutional experience. Ann Am Thorac Soc. 2014;11:578–82.CrossRefGoogle Scholar
  17. 17.
    Ishida T, Asano F, Yamazaki K, et al. Virtual bronchoscopic navigation combined with endobronchial ultrasound to diagnose small peripheral pulmonary lesions: a randomised trial. Thorax. 2011;66:1072–7.CrossRefGoogle Scholar
  18. 18.
    Asano F, Eberhardt R, Herth FJ. Virtual bronchoscopic navigation for peripheral pulmonary lesions. Respiration. 2014;88:430–40.CrossRefGoogle Scholar
  19. 19.
    Gex G, Pralong JA, Combescure C, et al. Diagnostic yield and safety of electromagnetic navigation bronchoscopy for lung nodules: a systematic review and meta-analysis. Respiration. 2014;87:165–76.CrossRefGoogle Scholar
  20. 20.
    Folch EE, Bowling MR, Gildea TR, et al. Design of a prospective, multicenter, global, cohort study of electromagnetic navigation bronchoscopy. BMC Pulm Med. 2016;16:60.CrossRefGoogle Scholar
  21. 21.
    Folch EE, Pritchett MA, Nead MA, et al. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: one-year results of the prospective, multicenter NAVIGATE study. J Thorac Oncol. 2019;14:445–58.CrossRefGoogle Scholar
  22. 22.
    Seijo LM, de Torres JP, Lozano MD, et al. Diagnostic yield of electromagnetic navigation bronchoscopy is highly dependent on the presence of a Bronchus sign on CT imaging: results from a prospective study. Chest. 2010;138:1316–21.CrossRefGoogle Scholar
  23. 23.
    Bowling MR, Kohan MW, Walker P, et al. The effect of general anesthesia versus intravenous sedation on diagnostic yield and success in electromagnetic navigation bronchoscopy. J Bronchol Interv Pulmonol. 2015;22:5–13.CrossRefGoogle Scholar
  24. 24.
    Herth FJ, Eberhardt R, Sterman D, et al. Bronchoscopic transparenchymal nodule access (BTPNA): first in human trial of a novel procedure for sampling solitary pulmonary nodules. Thorax. 2015;70:326–32.CrossRefGoogle Scholar
  25. 25.
    Harzheim D, Sterman D, Shah PL, et al. Bronchoscopic transparenchymal nodule access: feasibility and safety in an endoscopic unit. Respiration. 2016;91:302–6.CrossRefGoogle Scholar
  26. 26.
    Anciano C, Brown C, Bowling M. Going off road: the first case reports of the use of the transbronchial access tool with electromagnetic navigational bronchoscopy. J Bronchol Interv Pulmonol. 2017;24:253–6.CrossRefGoogle Scholar
  27. 27.
    Bowling MR, Brown C, Anciano CJ. Feasibility and safety of the transbronchial access tool for peripheral pulmonary nodule and mass. Ann Thorac Surg. 2017;104:443–9.CrossRefGoogle Scholar
  28. 28.
    Sobieszczyk MJ, Yuan Z, Li W, et al. Biopsy of peripheral lung nodules utilizing cone beam computer tomography with and without trans bronchial access tool: a retrospective analysis. J Thorac Dis. 2018;10:5953–9.CrossRefGoogle Scholar
  29. 29.
    Yamashita S, Yoshida Y, Iwasaki A. Robotic surgery for thoracic disease. Ann Thorac Cardiovasc Surg. 2016;22:1–5.CrossRefGoogle Scholar
  30. 30.
    Peters BS, Armijo PR, Krause C, et al. Review of emerging surgical robotic technology. Surg Endosc. 2018;32:1636–55.CrossRefGoogle Scholar
  31. 31.
    Boskoski I, Costamagna G. Endoscopy robotics: current and future applications. Dig Endosc. 2019;31:119–24.CrossRefGoogle Scholar
  32. 32.
    Li Z, Chiu PW. Robotic endoscopy. Visc Med. 2018;34:45–51.CrossRefGoogle Scholar
  33. 33.
    Rojas-Solano JR, Ugalde-Gamboa L, Machuzak M. Robotic bronchoscopy for diagnosis of suspected lung cancer: a feasibility study. J Bronchol Interv Pulmonol. 2018;25:168–75.Google Scholar
  34. 34.
    Murgu SD. Robotic assisted-bronchoscopy: technical tips and lessons learned from the initial experience with sampling peripheral lung lesions. BMC Pulm Med. 2019;19:89.CrossRefGoogle Scholar
  35. 35.
    Chen AC, Gillespie CT. Robotic endoscopic airway challenge: REACH assessment. Ann Thorac Surg. 2018;106:293–7.CrossRefGoogle Scholar
  36. 36.
    Schumann C, Hetzel M, Babiak AJ, et al. Endobronchial tumor debulking with a flexible cryoprobe for immediate treatment of malignant stenosis. J Thorac Cardiovasc Surg. 2010;139:997–1000.CrossRefGoogle Scholar
  37. 37.
    Babiak A, Hetzel J, Krishna G, et al. Transbronchial cryobiopsy: a new tool for lung biopsies. Respiration. 2009;78:203–8.CrossRefGoogle Scholar
  38. 38.
    Griff S, Ammenwerth W, Schonfeld N, et al. Morphometrical analysis of transbronchial cryobiopsies. Diagn Pathol. 2011;6:53.CrossRefGoogle Scholar
  39. 39.
    Hetzel J, Eberhardt R, Herth FJ, et al. Cryobiopsy increases the diagnostic yield of endobronchial biopsy: a multicentre trial. Eur Respir J. 2012;39:685–90.CrossRefGoogle Scholar
  40. 40.
    Schuhmann M, Bostanci K, Bugalho A, et al. Endobronchial ultrasound-guided cryobiopsies in peripheral pulmonary lesions: a feasibility study. Eur Respir J. 2014;43:233–9.CrossRefGoogle Scholar

Copyright information

© The Japanese Association for Thoracic Surgery 2019

Authors and Affiliations

  • Tsukasa Ishiwata
    • 1
  • Alexander Gregor
    • 1
  • Terunaga Inage
    • 1
  • Kazuhiro Yasufuku
    • 1
    Email author
  1. 1.Division of Thoracic SurgeryToronto General Hospital, University Health Network 200, University of TorontoTorontoCanada

Personalised recommendations