Advertisement

General Thoracic and Cardiovascular Surgery

, Volume 66, Issue 9, pp 523–528 | Cite as

Morphometrical and biomechanical analyses of a stentless bioprosthetic valve: an implication to avoid potential primary tissue failure

  • Hiroki TakayaEmail author
  • Shinya Masuda
  • Masaaki Naganuma
  • Ichiro Yoshioka
  • Goro Takahashi
  • Masatoshi Akiyama
  • Osamu Adachi
  • Kiichiro Kumagai
  • Shukei Sugita
  • Yoshikatsu Saiki
Original Article
  • 196 Downloads

Abstract

Objectives

Stentless bioprosthetic valves provide hemodynamic advantages over stented valves as well as excellent durability. However, some primary tissue failures in bioprostheses have been reported. This study was conducted to evaluate the morphometrical and biomechanical properties of the stentless Medtronic Freestyle™ aortic root bioprosthesis, to identify any arising problem areas, and to speculate on a potential solution.

Methods

The three-dimensional heterogeneity of the stentless bioprosthesis wall was investigated using computed tomography. The ascending aorta and the right, left, and non-coronary sinuses of Valsalva were resected and examined by an indentation test to evaluate their biomechanical properties.

Results

The non-coronary sinus of Valsalva was significantly thinner than the right sinus of Valsalva (p < 0.01). Young’s modulus, calculated as an indicator of elasticity, was significantly greater at the non-coronary sinus of Valsalva (430.7 ± 374.2 kPa) than at either the left (190.6 ± 70.6 kPa, p < 0.01) or right sinuses of Valsalva (240.0 ± 56.5 kPa, p < 0.05).

Conclusions

Based on the morphometrical and biomechanical analyses of the stentless bioprosthesis, we demonstrated that there are differences in wall thickness and elasticity between each sinus of Valsalva. These differences suggest that the non-coronary sinus of Valsalva is the most vulnerable and at greater risk of tissue failure. The exclusion of the non-coronary sinus of Valsalva may be beneficial to mitigate the long-term risks of tissue failure in the stentless bioprosthesis.

Keywords

Aortic root surgery Biomaterials Biomechanical analysis 

Notes

Compliance with Ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bach DS, Kon ND, Dumesnil JG, Sintek CF, Doty DB. Ten-year outcome after aortic valve replacement with the freestyle stentless bioprosthesis. Ann Thorac Surg. 2005;80:480–6. (discussion 6–7).CrossRefPubMedGoogle Scholar
  2. 2.
    Dumesnil JG, LeBlanc M-H, Cartier PC, Métras J, Desaulniers D, Doyle DP, et al. Hemodynamic features of the freestyle aortic bioprosthesis compared with stented bioprosthesis. Ann Thorac Surg. 1998;66:130-S3.CrossRefGoogle Scholar
  3. 3.
    Kunadian B, Vijayalakshmi K, Thornley AR, de Belder MA, Hunter S, Kendall S, et al. Meta-analysis of valve hemodynamics and left ventricular mass regression for stentless versus stented aortic valves. Ann Thorac Surg. 2007;84:73–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Perez de Arenaza D, Lees B, Flather M, Nugara F, Husebye T, Jasinski M, et al. Randomized comparison of stentless versus stented valves for aortic stenosis: effects on left ventricular mass. Circulation. 2005;112:2696–702.CrossRefPubMedGoogle Scholar
  5. 5.
    Borger MA, Carson SM, Ivanov J, Rao V, Scully HE, Feindel CM, et al. Stentless aortic valves are hemodynamically superior to stented valves during mid-term follow-up: a large retrospective study. Ann Thorac Surg. 2005;80:2180–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Muller LC, Chevtchik O, Bonatti JO, Muller S, Fille M, Laufer G. Treatment of destructive aortic valve endocarditis with the freestyle aortic root bioprosthesis. Ann Thorac Surg. 2003;75:453–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Fukui T, Suehiro S, Shibata T, Hattori K, Hirai H, Aoyama T. Aortic root replacement with freestyle stentless valve for complex aortic root infection. J Thorac Cardiovasc Surg. 2003;125:200–3.CrossRefPubMedGoogle Scholar
  8. 8.
    Ali A, Halstead JC, Cafferty F, Sharples L, Rose F, Coulden R, et al. Are stentless valves superior to modern stented valves? A prospective randomized trial. Circulation. 2006;114:I535-40.CrossRefPubMedGoogle Scholar
  9. 9.
    Lehmann S, Walther T, Kempfert J, Leontjev S, Rastan A, Falk V, et al. Stentless versus conventional xenograft aortic valve replacement: midterm results of a prospectively randomized trial. Ann Thorac Surg. 2007;84:467–72.CrossRefPubMedGoogle Scholar
  10. 10.
    Bach DS, Kon ND. Long-term clinical outcomes 15 years after aortic valve replacement with the freestyle stentless aortic bioprosthesis. Ann Thorac Surg. 2014;97:544–51.CrossRefPubMedGoogle Scholar
  11. 11.
    Sherrah AG, Jeremy RW, Puranik R, Bannon PG, Hendel PN, Bayfield MS, et al. Long term outcomes following freestyle stentless aortic bioprosthesis implantation: an Australian experience. Heart Lung Circ. 2016;25:82–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Ozaki N, Hino Y, Hanafusa Y, Yamashita T, Okada K, Tsukube T, et al. Perforation of the valsalva sinus after implantation of medtronic freestyle aortic bioprosthesis. Ann Thorac Surg. 2006;82:2282–5.CrossRefPubMedGoogle Scholar
  13. 13.
    Sakaguchi T, Miyagawa S, Nishi H, Yoshikawa Y, Fukushima S, Saito S, et al. Rupture of valsalva sinus after aortic root replacement with freestyle stentless bioprosthesis. Ann Thorac Surg. 2013;95:1074–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Castillo-Sang M, Voeller R, Moon MR. Aortic root replacement for pseudoaneurysm arising from freestyle aortic bioprosthesis. Aorta (Stamford). 2014;2:202–6.CrossRefGoogle Scholar
  15. 15.
    Englum BR, Pavlisko EN, Mack MC, Ganapathi AM, Schechter MA, Hanna JM, et al. Pseudoaneurysm formation after medtronic freestyle porcine aortic bioprosthesis implantation: a word of caution. Ann Thorac Surg. 2014;98:2061–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    O’Keefe KL, Cohle SD, McNamara JE, Hooker RL. Jr. Early catastrophic stentless valve failure secondary to possible immune reaction. Ann Thorac Surg. 2011;91:1269–72.CrossRefPubMedGoogle Scholar
  17. 17.
    Sumner D, Willke T, Berzins A, Turner T. Distribution of Young’s modulus in the cancellous bone of the proximal canine tibia. J Biomech. 1994;27:1095–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Hurle JMCE, Blanco AM. Development of semilunar valves. In: Gary S, Steven B, Philip B, Philippa F, editors. Larsen’s human embryology, 5th ed. London: Churchill Livingstone; 2014. pp. 292–4.Google Scholar
  19. 19.
    Manji RA, Zhu LF, Nijjar NK, Rayner DC, Korbutt GS, Churchill TA, et al. Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation. 2006;114:318–27.CrossRefPubMedGoogle Scholar
  20. 20.
    David TE, Armstrong S, Maganti M, Butany J, Feindel CM, Bos J. Postimplantation morphologic changes of glutaraldehyde-fixed porcine aortic roots and risk of aneurysm and rupture. J Thorac Cardiovasc Surg. 2009;137:94–100.CrossRefPubMedGoogle Scholar
  21. 21.
    Nair V, Law KB, Li AY, Phillips KR, David TE, Butany J. Characterizing the inflammatory reaction in explanted medtronic freestyle stentless porcine aortic bioprosthesis over a 6-year period. Cardiovasc Pathol. 2012;21:158–68.CrossRefPubMedGoogle Scholar
  22. 22.
    Borger MA, Prasongsukarn K, Armstrong S, Feindel CM, David TE. Stentless aortic valve reoperations: a surgical challenge. Ann Thorac Surg. 2007;84:737–43 (discussion 43–4).CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Association for Thoracic Surgery 2018

Authors and Affiliations

  • Hiroki Takaya
    • 1
    Email author
  • Shinya Masuda
    • 1
  • Masaaki Naganuma
    • 1
  • Ichiro Yoshioka
    • 1
  • Goro Takahashi
    • 1
  • Masatoshi Akiyama
    • 1
  • Osamu Adachi
    • 1
  • Kiichiro Kumagai
    • 2
  • Shukei Sugita
    • 3
  • Yoshikatsu Saiki
    • 1
  1. 1.Division of Cardiovascular SurgeryTohoku University Graduate School of MedicineSendaiJapan
  2. 2.Research Division of Sciences for Aortic DiseaseTohoku University Graduate School of MedicineSendaiJapan
  3. 3.Biomechanics Laboratory, Department of Mechanical EngineeringGraduate School of Engineering, Nagoya Institute of TechnologyNagoyaJapan

Personalised recommendations