Journal of the Academy of Marketing Science

, Volume 46, Issue 2, pp 273–299 | Cite as

Debates and assumptions about motion picture performance: a meta-analysis

  • François A. CarrillatEmail author
  • Renaud Legoux
  • Allègre L. Hadida
Original Empirical Research


Across the many studies of motion picture box office success, unresolved debates and untested assumptions about the contributing factors persist. Using an accessibility–diagnosticity framework and a meta-analysis of 634 effect sizes from 150 studies, the current article seeks to clarify the relationships of star brand equity and product reviews (from consumers and critics) with box office success. The popularity of stars (market and media appeals) exerts a stronger impact on box office success than their artistic recognition (as per award nominations and wins) at the moment of a movie’s release but not over its extended theatrical run. Whereas the impact of popular stars on box office success decreases over time, the influence of artistically recognized stars remains steady. The findings also identify a dual role for critics, who influence consumers’ movie choice and predict box office performance by merely reflecting moviegoers’ tastes. Finally, this study refutes the assumption that the impact of users’ reviews strengthens over time, relative to critics’ reviews.


Cinema Meta-analysis Star brand equity Product reviews Critics’ reviews Users’ reviews Cue diagnosticity 



The authors are thankful to Jan Heide and Ashish Sinha for their helpful comments on a previous version of this article as well as to Raphael Heffron for his assistance with data collection. This research benefited from the financial support of the Research and Knowledge Transfer Office of HEC Montréal, from the Fonds de Recherche du Québec - Société et Culture (FRQSC; grant # 146958), and from a University of Cambridge Judge Business School research grant.

Supplementary material

11747_2017_561_MOESM1_ESM.docx (42 kb)
ESM 1 (DOCX 42.0 kb)
11747_2017_561_MOESM2_ESM.docx (65 kb)
ESM 2 (DOCX 64.5 kb)
11747_2017_561_MOESM3_ESM.docx (49 kb)
ESM 3 (DOCX 48.9 kb)
11747_2017_561_MOESM4_ESM.docx (47 kb)
ESM 4 (DOCX 46.8 kb)
11747_2017_561_MOESM5_ESM.docx (48 kb)
ESM 5 (DOCX 47.7 kb)


  1. Adler, M. (1985). Stardom and talent. The American Economic Review, 75(1), 208–212.Google Scholar
  2. Akdeniz, M. B., & Talay, M. B. (2013). Cultural variations in the use of marketing signals: A multilevel analysis of the motion picture industry. Journal of the Academy of Marketing Science, 41(5), 601–624.CrossRefGoogle Scholar
  3. Akdeniz, M. B., Calantone, R. J., & Voorhees, C. M. (2013). Effectiveness of marketing cues on consumer perceptions of quality: The moderating roles of brand reputation and third-party information. Psychology and Marketing, 30(1), 76–89.CrossRefGoogle Scholar
  4. Akerlof, G. A. (1970). The market for 'lemons': Quality uncertainty and the market mechanism. Quarterly Journal of Economics, 84(3), 488–500.CrossRefGoogle Scholar
  5. Albert, S. (1998). Movie stars and the distribution of financially successful films in the motion picture industry. Journal of Cultural Economics, 22(4), 249–270.CrossRefGoogle Scholar
  6. Anand, N., & Watson, M. R. (2004). Tournament rituals in the evolution of fields: The case of the Grammy awards. Academy of Management Journal, 47(1), 59–80.Google Scholar
  7. Babić Rosario, A., Sotgiu, F., Valck, K. D., & Bijmolt, T. H. (2016). The effect of electronic word of mouth on sales: A meta-analytic review of platform, product, and metric factors. Journal of Marketing Research, 53(3), 297–318.CrossRefGoogle Scholar
  8. Bagella, M., & Becchetti, L. (1999). The determinants of motion picture box office performance: Evidence from movies produced in Italy. Journal of Cultural Economics, 23(4), 237–256.CrossRefGoogle Scholar
  9. Balio, T. (1985). The American film industry. Madison: University of Wisconsin Press.Google Scholar
  10. Basuroy, S., Chatterjee, S., & Ravid, S. A. (2003). How critical are critical reviews? The box office effects of film critics, star power, and budgets. Journal of Marketing, 67(4), 103–117.CrossRefGoogle Scholar
  11. Basuroy, S., Desai, K. K., & Talukdar, D. (2006). An empirical investigation of signaling in the motion picture industry. Journal of Marketing Research, 43(2), 287–295.CrossRefGoogle Scholar
  12. Bijmolt, T. H. A., & Pieters, R. G. M. (2001). Meta-analysis in marketing when studies contain multiple measurements. Marketing Letters, 12(2), 157–169.CrossRefGoogle Scholar
  13. Boatwright, P., Basuroy, S., & Kamakura, W. (2007). Reviewing the reviewers: The impact of individual film critics on box-office performance. Quantitative Marketing and Economics, 5(4), 401–425.CrossRefGoogle Scholar
  14. Borenstein, M. (1994). Effect size for continuous data. In H. Cooper, L. V. Hedges, & J. Valentine (Eds.), The handbook of research synthesis and meta-analysis. New York: Russel Edge Foundation.Google Scholar
  15. Borenstein, M., Hedges, L. V., Higgins, J., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester: John Wiley & Sons.CrossRefGoogle Scholar
  16. Brightlocal. (2016). Local consumer review survey. Retrieved from Accessed 19 June 2017.
  17. Brunet, J., Legoux, R., & Najar, S. (2008). Controlled and uncontrolled buzz as a marketing strategy in the film industry: The effectiveness of the junkets. Paper presented at the meeting Cultural Production in a Global Context: The Worldwide Film Industries, Copenhagen.Google Scholar
  18. Bughin, J., Doogan, J., & Vetvik, O. J. (2010). A new way to measure word-of-mouth marketing. The McKinsey Quarterly, 2, 113–116.Google Scholar
  19. Chakravarty, A., Liu, Y., & Mazumdar, T. (2010). The differential effects of online word-of-mouth and critics reviews on pre-release movie evaluation. Journal of Interactive Marketing, 24(3), 185–197.CrossRefGoogle Scholar
  20. Chang, B.-H., & Ki, E.-J. (2005). Devising a practical model for predicting theatrical movie success: Focusing on the experience good property. Journal of Medical Economics, 18(4), 247–269.CrossRefGoogle Scholar
  21. Chen, Y., Liu, Y., & Zhang, J. (2012). When do third-party product reviews affect firm value and what can firms do? The case of media critics and professional movie reviews. Journal of Marketing, 76(2), 116–134.CrossRefGoogle Scholar
  22. Chisholm, D. C., Fernandez-Blanco, V., Ravid, S. A., & Walls, W. D. (2015). Economics of motion pictures: The state of the art. Journal of Cultural Economics, 39(1), 1–13.CrossRefGoogle Scholar
  23. d'Astous, A., & Touil, N. (1999). Consumer evaluations of movies on the basis of critics judgments. Psychology and Marketing, 16(8), 677–694.CrossRefGoogle Scholar
  24. De Matos, C. A., & Rossi, C. A. V. (2008). Word-of-mouth communications in marketing: A meta-analytic review of the antecedents and moderators. Journal of the Academy of Marketing Science, 36(4), 578–596.CrossRefGoogle Scholar
  25. De Vany, A. (2004). Hollywood economics: How extreme uncertainty shapes the film industry. New York: Routledge.CrossRefGoogle Scholar
  26. Desai, K. K., & Basuroy, S. (2005). Interactive influence of genre familiarity, star power, and critics reviews in the cultural goods industry: The case of motion pictures. Psychology and Marketing, 22(3), 203–223.CrossRefGoogle Scholar
  27. Deuchert, E., Adjamah, K., & Florian, P. (2005). For Oscar glory or Oscar money? Journal of Cultural Economics, 29(3), 159–176.CrossRefGoogle Scholar
  28. Duan, W., Gu, B., & Whinston, A. B. (2008). The dynamics of online word-of-mouth and product sales-an empirical investigation of the movie industry. Journal of Retailing, 84(2), 233–242.CrossRefGoogle Scholar
  29. Duval, S., & Tweedie, R. (2000). A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. Journal of the American Statistical Association, 95(449), 89–98.Google Scholar
  30. Eisend, M., & Tarrahi, F. (2014). Meta-analysis selection bias in marketing research. International Journal of Research in Marketing, 31(3), 317–326.CrossRefGoogle Scholar
  31. Elberse, A. (2007). The power of stars: Do star actors drive the success of movies? Journal of Marketing, 71(4), 102–120.CrossRefGoogle Scholar
  32. Eliashberg, J., & Sawhney, M. S. (1994). Modeling goes to Hollywood: Predicting individual differences in movie enjoyment. Management Science, 40(9), 1151–1173.CrossRefGoogle Scholar
  33. Eliashberg, J., & Shugan, S. M. (1997). Film critics: Influencers or predictors? Journal of Marketing, 61(April), 68–78.CrossRefGoogle Scholar
  34. Fátharta, C. Ó. (2016). Kevin Thornton's restaurant to close after loss of Michelin star. Irish examiner. Retrieved from Accessed 10 April 2017.
  35. Feldman, J. M., & Lynch, J. G. (1988). Self-generated validity and other effects of measurement on belief, attitude, intention, and behavior. Journal of Applied Psychology, 73(3), 421–435.CrossRefGoogle Scholar
  36. Ferguson, C. J., & Brannick, M. T. (2012). Publication bias in psychological science: Prevalence, methods for identifying and controlling, and implications for the use of meta-analyses. Psychological Methods, 17(1), 120.CrossRefGoogle Scholar
  37. Flanagin, A. J., & Metzger, M. J. (2013). Trusting expert-versus user-generated ratings online: The role of information volume, valence, and consumer characteristics. Computers in Human Behavior, 29(4), 1626–1634.CrossRefGoogle Scholar
  38. Floyd, K., Freling, R., Alhoqail, S., Cho, H. Y., & Freling, T. (2014). How online product reviews affect retail sales: A meta-analysis. Journal of Retailing, 90(2), 217–232.CrossRefGoogle Scholar
  39. Gazley, A., Clark, G., & Sinha, A. (2011). Understanding preferences for motion pictures. Journal of Business Research, 64(8), 854–861.CrossRefGoogle Scholar
  40. Hadida, A. L. (2009). Motion picture performance: A review and research agenda. International Journal of Management Reviews, 11(3), 297–335.CrossRefGoogle Scholar
  41. Hadida, A. L. (2010). Commercial success and artistic recognition of motion picture projects. Journal of Cultural Economics, 34(1), 45–80.CrossRefGoogle Scholar
  42. Hennig-Thurau, T., Walsh, G., & Wruck, O. (2001). An investigation of the factors determining the success of service innovations: The case of motion pictures. Academy of Marketing Science Review, 2001(6), 1–23.Google Scholar
  43. Hennig-Thurau, T., Wiertz, C., & Feldhaus, F. (2015). Does twitter matter? The impact of microblogging word of mouth on consumers adoption of new movies. Journal of the Academy of Marketing Science, 43(3), 375–394.CrossRefGoogle Scholar
  44. Hofmann, J., Clement, M., Völckner, F., & Hennig-Thurau, T. (2017). Empirical generalizations on the impact of stars on the economic success of movies. International Journal of Research in Marketing, 34(2), 442–461.CrossRefGoogle Scholar
  45. Holbrook, M. B., & Addis, M. (2007). Taste versus the market: An extension of research on the consumption of popular culture. Journal of Consumer Research, 34, 415–424.CrossRefGoogle Scholar
  46. Hunter, J. E., & Schmidt, F. L. (2004). Methods of meta-analysis: Correcting error and bias in research findings. Thousand Oaks: Sage Publications.CrossRefGoogle Scholar
  47. Internet Movie Database (2016). Advanced title search. Available at
  48. Johnson, B. T., & Huedo-Medina, T. B. (2011). Depicting estimates using the intercept in meta-regression models: The moving constant technique. Research Synthesis Methods, 2(3), 204–220.CrossRefGoogle Scholar
  49. Johnston, N. (2009). IMDb movie ratings over the years. Retrieved from Accessed 11 March 2017.
  50. Joshi, A. (2015). Movie stars and the volatility of movie revenues. Journal of Medical Economics, 28(4), 246–267.CrossRefGoogle Scholar
  51. Joshi, A. M., & Hanssens, D. M. (2009). Movie advertising and the stock market valuation of studios: A case of great expectations? Marketing Science, 28(2), 239–250.CrossRefGoogle Scholar
  52. Joshi, A., & Mao, H. (2012). Adapting to succeed? Leveraging the brand equity of best sellers to succeed at the box office. Journal of the Academy of Marketing Science, 40(4), 558–571.CrossRefGoogle Scholar
  53. Kepes, S., Banks, G. C., McDaniel, M., & Whetzel, D. L. (2012). Publication bias in the organizational sciences. Organizational Research Methods, 15(4), 624–662.CrossRefGoogle Scholar
  54. Kermode, M. (2014). Hatchet job: Love movies, hate critics. London: Pan MacMillan.Google Scholar
  55. Knapp, A. K., Hennig-Thurau, T., & Mathys, J. (2014). The importance of reciprocal spillover effects for the valuation of bestseller brands: Introducing and testing a contingency model. Journal of the Academy of Marketing Science, 42(2), 205–221.CrossRefGoogle Scholar
  56. Knoll, J., & Matthes, J. (2017). The effectiveness of celebrity endorsements: A meta-analysis. Journal of the Academy of Marketing Science, 45(1), 55–75.CrossRefGoogle Scholar
  57. Konstantopoulos, S. (2011). Fixed effects and variance components estimation in three-level meta-analysis. Research Synthesis Methods, 2(1), 61–76.CrossRefGoogle Scholar
  58. Langan, R., Besharat, A., & Varki, S. (2017). The effect of review valence and variance on product evaluations: An examination of intrinsic and extrinsic cues. International Journal of Research in Marketing, 34(2), 414–429.CrossRefGoogle Scholar
  59. Legoux, R., Larocque, D., Laporte, S., Belmati, S., & Boquet, T. (2016). The effect of critical reviews on exhibitors' decisions: Do reviews affect the survival of a movie on screen? International Journal of Research in Marketing, 33(2), 357–374.CrossRefGoogle Scholar
  60. Levin, A. M., Levin, I. P., & Heath, C. E. (1997). Movie stars and authors as brand names: Measuring brand equity in experiential products. Advances in Consumer Research, 24(1), 175–181.Google Scholar
  61. Lin, D.-Y., & Sullivan, P. F. (2009). Meta-analysis of genome-wide association studies with overlapping subjects. American Journal of Human Genetics, 85, 862–872.CrossRefGoogle Scholar
  62. Lipsey, M. W., & Wilson, D. (2001). Practical meta-analysis. Thousand Oaks: Sage Publications.Google Scholar
  63. Litman, B. R. (1983). Predicting success of theatrical movies: An empirical study. The Journal of Popular Culture, 16(4), 156–175.CrossRefGoogle Scholar
  64. Liu, Y. (2006). Word of mouth for movies: Its dynamics and impact on box office revenue. Journal of Marketing, 70(3), 74–89.CrossRefGoogle Scholar
  65. Liu, A., Liu, Y., & Mazumdar, T. (2014). Star power in the eye of the beholder: A study of the influence of stars in the movie industry. Marketing Letters, 25(4), 385–396.CrossRefGoogle Scholar
  66. Luo, L., Chen, X., Han, J., & Whan Park, C. (2010). Dilution and enhancement of celebrity brands through sequential movie releases. Journal of Marketing Research, 47(6), 1114–1128.CrossRefGoogle Scholar
  67. Lynch, J. G., Marmorstein, H., & Weigold, M. F. (1988). Choices from sets including remembered brands: Use of recalled attributes and prior overall evaluations. Journal of Consumer Research, 15(2), 169–184.CrossRefGoogle Scholar
  68. Marich, R. (2014). Movie star power dims as actors become hucksters. Huffington post. Retrieved from Accessed 27 March 2017.
  69. McClintock, P. & Galloway, S. (2017). Matt Damon’s ‘the Great Wall’ to lose $75 million; future U.S.-China productions in doubt. Hollywood Reporter. Retrieved from Accessed 2 April 2017.
  70. Merry, S. (2015). Are A-list actors a waste of money? Sydney morning herald. Retrieved from Accessed 7 Aug 2016.
  71. Mukhopadhyay, P. (2008). Theory and methods of survey sampling. New Delhi: PHI Learning Pvt. Ltd..Google Scholar
  72. Munder, T., Brütsch, O., Leonhart, R., Gerger, H., & Barth, J. (2013). Researcher allegiance in psychotherapy outcome research: An overview of reviews. Clinical Psychology Review, 33(4), 501–511.CrossRefGoogle Scholar
  73. Nelson, P. (1970). Information and consumer behavior. Journal of Political Economy, 78(2), 311–329.CrossRefGoogle Scholar
  74. Nielsen (2015). Global trust in advertising. Retrieved from]. Accessed 7 Aug 2016.
  75. Patten, D. (2017). Oscar ratings down double digits in demo; 32.9m Viewership hits 9-year low. Deadline Hollywood. Retrieved from Accessed 31 March 2017.
  76. Perry, K., & Hyde, D. (2014). Celebrity chefs' restaurants among most overpriced and worst food. The telegraph. Retrieved from Accessed 10 Apr 2017.
  77. Politis, D. N., Romano, J. P., & Wolf, M. (2001). On the asymptotic theory of subsampling. Statistica Sinica, 11(4), 1105–1124.Google Scholar
  78. Proserpio, D., & Zervas, G. (2017). Online reputation management: Estimating the impact of management responses on consumer reviews. Marketing Science, 1–21.
  79. Purohit, D., & Srivastava, J. (2001). Effect of manufacturer reputation, retailer reputation, and product warranty on consumer judgments of product quality: A cue diagnosticity framework. Journal of Consumer Psychology, 10(3), 123–134.CrossRefGoogle Scholar
  80. PwC (2015). Box office resilience underscores the continuing popularity of the cinematic experience. Retrieved from:]. Accessed 7 Aug 2016.
  81. Ravid, S. A. (1999). Information, blockbusters, and stars: A study of the film industry. Journal of Business Research, 72(4), 463–492.Google Scholar
  82. Reddy, S. K., Swaminathan, V., & Motley, C. M. (1998). Exploring the determinants of Broadway show success. Journal of Marketing Research, 35(3), 370–383.CrossRefGoogle Scholar
  83. Reinstein, D. A., & Snyder, C. M. (2005). The influence of expert reviews on consumer demand for experience goods: A case study of movie critics. Journal of Industrial Economics, 53(1), 27–51.CrossRefGoogle Scholar
  84. Rosen, S. (1981). The economics of superstars. American Economic Review, 71(5), 845–858.Google Scholar
  85. Rosenberg, M. S. (2005). The file-drawer problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution, 59(2), 464–468.CrossRefGoogle Scholar
  86. Rosenthal, R. (1979). The “file drawer problem” and tolerance for null results. Psychological Bulletin, 86(3), 638–641.CrossRefGoogle Scholar
  87. Sedgwick, J. (1999). The comparative popularity of stars in mid-1930s Britain. Journal of Popular British Cinema, 2, 121–128.Google Scholar
  88. Sifferlin, A. (2016). Food endorsed by celebrities are almost all terrible for you. Retrived from: Accessed 8 June 2017.
  89. Song, R., Moon, S., Chen, H. A., & Houston, M. B. (2017). When marketing strategy meets culture: The role of culture in product evaluations. Journal of the Academy of Marketing Science.
  90. Sood, S., & Drèze, X. (2006). Brand extensions of experiential goods: Movie sequel evaluations. Journal of Consumer Research, 33(3), 352–360.CrossRefGoogle Scholar
  91. Stanley, T. D., & Doucouliagos, H. (2012). Meta-regression analysis in economics and business (Vol. 5). New York: Routledge.CrossRefGoogle Scholar
  92. Sterne, J. A., & Egger, M. (2005). Regression methods to detect publication and other bias in meta-analysis. In A. R. Rothstein, A. J. Sutton, & M. Borenstein (Eds.), Publication bias in meta-analysis: Prevention, assessment, and adjustments. New York: Wiley.Google Scholar
  93. Stigler, G. J., & Becker, G. S. (1977). De gustibus non est disputandum. American Economic Review, 67(2), 76–90.Google Scholar
  94. Stockdale, D. (2015). 10 worst products endorsed by celebrities. Retrieved from Accessed 8 June 2017.
  95. Suárez-Vázquez, A. (2011). Critic power or star power? The influence of hallmarks of quality of motion pictures: An experimental approach. Journal of Cultural Economics, 35(2), 119–135.CrossRefGoogle Scholar
  96. The Economist (2016). Fading stars: Hollywood studios can no longer bank on the pulling-power of famous actors. Retrieved from]. Accessed 8 Aug 2016.
  97. Van den Bulte, C., & Lilien, G. L. (2001). Medical innovation revisited: Social contagion versus marketing effort. American Journal of Sociology, 106(5), 1409–1435.CrossRefGoogle Scholar
  98. Van den Noortgate, W., López-López, J. A., Marín-Martínez, F., & Sánchez-Meca, J. (2015). Meta-analysis of multiple outcomes: A multilevel approach. Behavior Research Methods, 47(4), 1274–1294.CrossRefGoogle Scholar
  99. Viechtbauer, W. (2010). Conducting meta-analyses in R with the Metafor package. Journal of Statistical Software, 63(3), 1–48.Google Scholar
  100. Watson IV, G. F., Beck, J. T., Henderson, C. M., & Palmatier, R. W. (2015). Building, measuring, and profiting from customer loyalty. Journal of the Academy of Marketing Science, 43(6), 790–825.CrossRefGoogle Scholar
  101. You, Y., Vadakkepatt, G. G., & Joshi, A. (2015). A meta-analysis of electronic word-of-mouth elasticity. Journal of Marketing, 79(2), 19–39.CrossRefGoogle Scholar
  102. Zhang, X. & Dellarocas, C. (2006). The lord of the ratings: Is a movie's fate is influenced by reviews? Proceedings of the International Conference on Information Systems, Milwaukee.Google Scholar
  103. Zuckerman, E. W., & Kim, T. Y. (2003). The critical trade-off: Identity assignment and box-office success in the feature film industry. Industrial and Corporate Change, 12(1), 27–67.CrossRefGoogle Scholar
  104. Zuckerman, E. W., Kim, T. Y., Ukanwa, K., & Rittmann, J. V. (2003). Robust identities or nonentities? Typecasting in the feature-film labor market. American Journal of Sociology, 108(5), 1018–1073.CrossRefGoogle Scholar

Copyright information

© Academy of Marketing Science 2017

Authors and Affiliations

  • François A. Carrillat
    • 1
    Email author
  • Renaud Legoux
    • 2
  • Allègre L. Hadida
    • 3
  1. 1.University of Technology Sydney, Business SchoolUltimo NSWAustralia
  2. 2.HEC MontréalQCCanada
  3. 3.University of CambridgeCambridgeUK

Personalised recommendations