Advertisement

Journal of the Academy of Marketing Science

, Volume 44, Issue 1, pp 66–87 | Cite as

Adaptive personalization using social networks

  • Tuck Siong Chung
  • Michel Wedel
  • Roland T. RustEmail author
Original Empirical Research

Abstract

This research provides insights into the following questions regarding the effectiveness of mobile adaptive personalization systems: (1) to what extent can adaptive personalization produce a better service/product over time? (2) does adaptive personalization work better than self-customization? (3) does the use of the customer’s social network result in better personalization? To answer these questions, we develop and implement an adaptive personalization system for personalizing mobile news based on recording and analyzing customers’ behavior, plus information from their social network. The system learns from an individual’s reading history, automatically discovers new material as a result of shared interests in the user’s social network, and adapts the news feeds shown to the user. Field studies show that (1) repeatedly adapting to the customer’s observed behavior improves personalization performance; (2) personalizing automatically, using a personalization algorithm, results in better performance than allowing the customer to self-customize; and (3) using the customer’s social network for personalization results in further improvement. We conclude that mobile automated adaptive personalization systems that take advantage of social networks may be a promising approach to making personalization more effective.

Keywords

Personalization Social networks News Bayes classifier Recommendation systems Mobile commerce Smart phones Service marketing 

References

  1. Adomavicius, G., & Tuzhilin, A. (2005). Personalization technologies: A process-oriented perspective. Communications of the ACM, 48(10), 83–90.CrossRefGoogle Scholar
  2. Ansari, A., Essegaier, S., & Kohli, R. (2000). Internet recommendation systems. Journal of Marketing Research, 37(3), 363–375.CrossRefGoogle Scholar
  3. Ansari, A., & Mela, C. F. (2003). E-customization. Journal of Marketing Research, 40(2), 131–145.CrossRefGoogle Scholar
  4. Ansari, A., Koenigsberg, O., & Stahl, F. (2011). Modeling multiple relationships in social networks. Journal of Marketing Research, 48(4), 713–728.CrossRefGoogle Scholar
  5. Atahan, P., & Sarkar, S. (2011). Accelerated learning of user profiles. Management Science, 57(2), 215–239.CrossRefGoogle Scholar
  6. Bechwati, N. N., & Xia, L. (2003). Do computers sweat? The impact of perceived effort of online decision aids on consumers’ satisfaction with the decision process. Journal of Consumer Psychology, 13(1&2), 139–148.Google Scholar
  7. Bell, D. R., & Song, S. Y. (2007). Neighborhood effects and trial on the Internet: Evidence from online grocery retailing. Quantitative Marketing and Economics, 5(4), 361–400.CrossRefGoogle Scholar
  8. Capgemini. (2008). Closed loop marketing: Unlocking the benefits of customer centricity. http://www.us.capgemini.com/lifesciences/. Accessed 18 Aug 2011
  9. Caumont, A. (2013). 12 trends shaping digital news. http://www.pewresearch.org/fact-tank/2013/10/16/12-trends-shaping-digital-news/. Accessed 1 Nov 2013.
  10. Cerquides, J. & Màntaras, R.L. (2003). The indifferent naïve bayes classifier. Proceedings of the 16th International FLAIRS Conference. Google Scholar
  11. Chung, T. S., Rust, R. T., & Wedel, M. (2009). My mobile music: An adaptive personalization system for digital audio players. Marketing Science, 28(1), 52–68.CrossRefGoogle Scholar
  12. Cialdini, R. B. (2001). Influence: Science and practice (4th ed.). New York: Harper Collins.Google Scholar
  13. Cohen, W. W., & Singer, Y. (1999). Context sensitive learning methods for text categorization. ACM Transactions on Information Systems, 17(2), 141–173.CrossRefGoogle Scholar
  14. Cooke, A. D. J., Sujan, H., Sujan, M., & Weitz, B. A. (2002). Marketing the unfamiliar: The role of context and item-specific information in electronic agent recommendations. Journal of Marketing Research, 39(4), 488–497.CrossRefGoogle Scholar
  15. Das, A., Datar, M., Garg, A., & Rajaram, S. (2007). Google news personalization: Scalable online collaborative filtering. In Proceedings of the 16th International Conference on World Wide Web (pp. 271–280).CrossRefGoogle Scholar
  16. Edmonds, R., Guskin, E., Mitchell, A. & Jurkowitz,M. (2013). The state of the news media 2013. http://stateofthemedia.org/2013/newspapers-stabilizing-but-still-threatened/newspapers-by-the-numbers/. Accessed 1 Nov 2013.
  17. Eyheramendy, S., Lewis, D. D., & Madigan, D. (2003). On the naïve bayes model for text categorization. Proceedings of the 9th International Conference on Artificial Intelligence and Statistics (AISTATS).Google Scholar
  18. Fichman, R. G., & Cronin, M. J. (2003). Information-rich commerce at a crossroad: Business and technology adoption requirements. Communications of the ACM, 46(9), 96–102.CrossRefGoogle Scholar
  19. Franke, N., Keinz, P., & Steger, C. J. (2009). Testing the value of customization: When do customers really prefer products tailored to their preferences? Journal of Marketing, 73(5), 103–121.CrossRefGoogle Scholar
  20. Freeman, L. C. (1977). Set of measures of centrality based on betweenness. Sociometry, 40(1), 35–41.CrossRefGoogle Scholar
  21. Godes, D. (2011). Invited comment on ‘Opinion leadership and social contagion in new product diffusion’. Marketing Science, 30(2), 224–229.CrossRefGoogle Scholar
  22. Godes, D., & Mayzlin, D. (2009). Firm-created word-of-mouth communication: Evidence from a field study. Marketing Science, 28(4), 721–739.CrossRefGoogle Scholar
  23. Good, P. (2005). Introduction to statistics through resampling methods and R/S-PLUS. Hoboken: Wiley.CrossRefGoogle Scholar
  24. Hair, J. F., Black, B., Babin, B., & Anderson, R. (2005). Multivariate data analysis (6th ed.). Saddle River: Prentice Hall.Google Scholar
  25. Hand, D. J., & Yu, K. (2001). Idiot’s Bayes: Not so stupid after all? International Statistical Review, 69(3), 385–398.Google Scholar
  26. Hauser, J. R., Liberali, G., & Urban, G. L. (2014). Website morphing 2.0: Switching costs, partial exposure, random exit, and when to morph. Management Science, 60(6), 1594–1616.CrossRefGoogle Scholar
  27. Hauser, J. R., Urban, G. L., Liberali, G., & Bruan, M. (2009). Website morphing. Marketing Science, 28(2), 202–223.CrossRefGoogle Scholar
  28. Hartmann, W. R. (2010). Demand estimation with social interactions and the implications for targeted marketing. Marketing Science, 29(4), 585–601.CrossRefGoogle Scholar
  29. Hartmann, W., Manchanda, P., Nair, H., Bothner, M., Dodds, P., Godes, D., Hosanagar, K., & Tucker, C. (2008). Modeling social interactions: Identification, empirical methods and policy implications. Marketing Letters, 19(3), 287–304.CrossRefGoogle Scholar
  30. Häubl, G., & Trifts, V. (2000). Consumer decision making in online shopping environment: The effects of interactive decision aids. Marketing Science, 19(1), 4–21.CrossRefGoogle Scholar
  31. Herlocker, J.L., Konstan, J.A.& Riedl, J. (2000). Explaining collaborative filtering recommendations. Proceedings of the 2000 ACM conference on Computer supported cooperative work, 241–250.Google Scholar
  32. Herlocker, J. L., Terveen, L. G., Konstan, J. A., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on information systems, 22, 5–53.CrossRefGoogle Scholar
  33. Hosanagar, K., Fleder, D., Lee, D., & Buja, A. (2013). Will the global village fracture into tribes? Recommender systems and their effects on consumer fragmentation. Management Science., 60(4), 805–823.CrossRefGoogle Scholar
  34. Iyengar, R., Van den Bulte, C., & Valente, T. W. (2011). Opinion leadership and social contagion in new product diffusion. Marketing Science, 30(2), 195–212.CrossRefGoogle Scholar
  35. Karr, D. (2014). The State of Mobile in the US. https://www.marketingtechblog.com/mobile-usa-2014/. Accessed 24 Oct 2014.
  36. Keath, J. (2011). Instagram becomes the largest mobile social network. http://socialfresh.com/instagram-largest-mobile-social-network/. Accessed 17 Dec 2011.
  37. Khan, R., Lewis, M., & Singh, V. (2009). Dynamic customer management and the value of one-to-one marketing. Marketing Science, 28(6), 1063–1079.CrossRefGoogle Scholar
  38. Kirchoff, S. M. (2010). The U.S. Newspaper Industry in Transition. Congressional Research Service Report for Congress, 7–5700, www.crs.gov.
  39. Levin, D., & Cross, R. (2004). The strength of weak ties you can trust: The mediating role of trust in effective knowledge transfer. Management Science, 40(11), 1477–1490.CrossRefGoogle Scholar
  40. Li, L., Wang, D. D., Zhu, S. Z., & Li, T. (2011). Personalized news recommendation: A review and an experimental investigation. Journal of Computer Science and Technology, 26(5), 754–766.CrossRefGoogle Scholar
  41. Liang, T. P., Yang, Y. F., Chen, D. N., & Ku, Y. C. (2008). A semantic-expansion approach to personalized knowledge recommendation. Decision Support Systems, 45(3), 401–412.CrossRefGoogle Scholar
  42. Liu, D. R., Tsai, P. Y., & Chiu, P. H. (2011). Personalized recommendation of popular blog articles for mobile applications. Information Sciences, 181(9), 1552–1572.CrossRefGoogle Scholar
  43. Liu, J. H., Dolan, P. & Pedersen, E. R. (2010). Personalized news recommendation based on click behavior. http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/35599.pdf.. Accessed 13 Aug 2014.
  44. Lunneborg, C. E. (2000). Data analysis by resampling: Concepts and applications. Belmont: Duxbury Press.Google Scholar
  45. Lyytinen, K., & Yoo, Y. J. (2002). Research commentary: The next wave of nomadic computing. Information Systems Research, 13(4), 377–388.CrossRefGoogle Scholar
  46. Lyytinen, K., Yoo, Y. J., Varshney, U., Ackerman, M., Davis, G., Avital, M., Robey, D., Sawyer, S., & Sorensen, C. (2004). Surfing the next wave: Design and implementation challenges of ubiquitous computing. Communications of the Association for Information Systems, 13(40), 697–716.Google Scholar
  47. McNee, S.M., Riedl, J., Konstan, J.A. (2006). Accurate is not always good: How accuracy metrics have hurt recommender systems. CHI’06 extended abstracts on Human factors in computing systems, 1097–1101.Google Scholar
  48. Mcpherson, M., Smith-Lovin, L., & Cook, J. M. (2001). Birds of a feather: Homophily in social networks. Annual Review of Sociology, 27, 415–444.CrossRefGoogle Scholar
  49. Moon, S., Gary, J., & Russell, G. J. (2008). Predicting product purchase from inferred customer similarity: An autologistic model approach. Management Science, 54(1), 71–82.CrossRefGoogle Scholar
  50. Nair, H., Manchanda, P., & Bhatia, T. (2010). Asymmetric social interactions in physician prescription behavior: The role of opinion leaders. Journal of Marketing Research, 47(5), 883–895.CrossRefGoogle Scholar
  51. Narayan, V., Rao, V. R., & Saunders, C. (2011). How peer influence affects attribute preferences: A bayesian updating mechanism. Marketing Science, 30(2), 368–384.CrossRefGoogle Scholar
  52. Newspaper Association Of America. (2014). Business model evolving, circulation revenue rising. http://www.naa.org/Trends-and-Numbers/Newspaper-Revenue/Newspaper-Media-Industry-Revenue-Profile-2013.aspx. Accessed 6 Nov 2014
  53. Picault, J., Ribière, M. (2008). Method of adapting a user profile including user preferences and communication device. European Patent EP08290033.Google Scholar
  54. Rossi, P. E., Gilula, Z., & Allenby, G. M. (2001). Overcoming scale usage heterogeneity: A bayesian hierarchical approach. Journal of the American Statistical Association, 96(453), 20–31.CrossRefGoogle Scholar
  55. Rust, R. T., & Huang, M. H. (2014). The service revolution and the transformation of marketing science. Marketing Science, 33(2), 206–221.CrossRefGoogle Scholar
  56. Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34, 1–47.CrossRefGoogle Scholar
  57. Shapira, B., Shoval, P., Meyer, J., Tractinsky, N., & Mimran, D. (2009). ePaper: A personalized mobile newspaper. Journal of the American Society for Information Science and Technology, 60(11), 2333–2346.CrossRefGoogle Scholar
  58. Shugan, S. M. (1980). The cost of thinking. Journal of Consumer Research, 7(2), 99–111.CrossRefGoogle Scholar
  59. Smith, D., Menon, S., & Sivakumar, K. (2005). Online peer and editorial recommendations, trust, and choice in virtual markets. Journal of Interactive Marketing, 19(3), 15–37.CrossRefGoogle Scholar
  60. Subramanian, C. (2012). Gadget users hungrier for news, but media still lags in profit. http://techland.time.com/2012/03/20/124596/. Accessed 21 Mar 2012
  61. Thompson, D. V., Hamilton, R. W., & Rust, R. T. (2005). Feature fatigue: When product capabilities become too much of a good thing. Journal of Marketing Research, 42(4), 431–442.CrossRefGoogle Scholar
  62. Urban, G. L., Liberali, G., MacDonald, E., Bordley, R., & Hauser, J. R. (2014). Morphing banner advertising. Marketing Science, 33(1), 27–46.CrossRefGoogle Scholar
  63. Van Rijsbergen, C. J. (1979). Information Retrieval. London: Butterworth.Google Scholar
  64. Van Roy, B., & Yan, X. (2010). Manipulation robustness of collaborative filtering. Management Science, 56(11), 1911–1929.CrossRefGoogle Scholar
  65. Varki, S., & Rust, R. T. (1998). Technology and optimal segment size. Marketing Letters, 9(2), 147–167.CrossRefGoogle Scholar
  66. Wang, J., Aribarg, A., & Atchadé, Y. F. (2013). Modeling Choice Interdependence in a Social Network. Marketing Science, 32(6), 977–997.CrossRefGoogle Scholar
  67. Webb, G. I., Buughton, J. R., & Wang, Z. H. (2005). Not so naïve bayes: Aggregating one-dependence estimators. Machine Learning, 58(1), 5–24.CrossRefGoogle Scholar
  68. Yaniv, I. (2004). Receiving other peoples’ advice: Influence and Benefit. Organizational Behavior and Human Decision Processes, 93(1), 1–13.CrossRefGoogle Scholar
  69. Ying, Y. P., Feinberg, F., & Wedel, M. (2006). Leveraging missing ratings to improve online recommendation systems. Journal of Marketing Research, 43(3), 355–365.CrossRefGoogle Scholar
  70. Zhang, J., & Krishnamurthi, L. (2004). Customizing promotions in online stores. Marketing Science, 23(4), 561–578.CrossRefGoogle Scholar
  71. Zhang, J. J. (2010). The sound of silence: Observational learning in the U.S. kidney market. Marketing Science, 29(2), 315–335.CrossRefGoogle Scholar
  72. Zhao, Y., Yang, S., Narayan, V., & Zhao, Y. (2013). Modeling consumer learning from online product reviews. Marketing Science, 32(1), 153–169.CrossRefGoogle Scholar

Copyright information

© Academy of Marketing Science 2015

Authors and Affiliations

  • Tuck Siong Chung
    • 1
  • Michel Wedel
    • 2
  • Roland T. Rust
    • 2
    Email author
  1. 1.Nanyang Business SchoolNanyang Technological UniversitySingaporeSingapore
  2. 2.Robert H. Smith School of BusinessUniversity of MarylandCollege ParkUSA

Personalised recommendations